
1

Gateway Integration Guide

V1.05

jamiemills
Stamp

2

Version Date Update information

1.01 13/11/2020 Added version and version control to guide.

1.02 10/12/2020 Added Stored Credentials section.

1.03 12/12/2020 Removed reference to E-Receipts.

1.04 27/01/2021 Added Section 23 – Digital Wallets (only Google Pay).

1.05 28/01/2021 Added Apple Pay to Digital Wallets section.

3

CONTENTS

1 Gateway Integration .. 4
2 New Transactions .. 21
3 Management Requests .. 25
4 Hosted Payment Page Options .. 27
5 AVS/CV2 Checking .. 29
6 3-D Secure Authentication .. 33
7 Risk Checking .. 49
8 Payment Facilitators .. 57
9 UK MCC 6012 Merchants .. 58
10 Billing Descriptor ... 60
11 Surcharges ... 62
12 Receipts and Notifications .. 66
13 Recurring Transaction Agreements .. 70
14 Duplicate Transaction Checking .. 74
15 Purchase Data .. 75
16 Custom Data ... 79
17 Advanced Data ... 80
18 Gateway Wallet .. 87
19 Masterpass Wallet ... 94
20 PayPal Transactions .. 105
21 Amazon Pay Transaction .. 130
22 PPRO Transactions ... 142
23 Digital Wallet Transactions ... 154
A-1 Response Codes .. 159
A-2 AVS / CV2 Check Response Codes ... 167
A-3 3-D Secure Enrolment/Authentication Codes ... 169
A-4 3-D Secure Enrolment/Authentication Only .. 170
A-5 Request Checking Only .. 171
A-6 Merchant Account Mapping.. 172
A-7 Velocity Control System (VCS) .. 173
A-8 Capture Delay ... 174
A-9 Types of card ... 175
A-10 Integration Testing .. 177
A-11 Sample Signature Calculation .. 183
A-12 Transaction Life cycle ... 185
A-13 Transaction types .. 189
A-14 Payment Tokenisation ... 190
A-15 Repeat Transactions ... 193
A-16 Transaction Cloning .. 196
A-17 Stored Credentials Framework .. 202
A-18 Integration Libraries .. 208
A-19 Example HTTP Requests .. 242
A-20 Example Integration Code .. 250
A-21 Example Library Code ... 259
A-22 Frequently Asked Questions .. 274
INDEX …….275

4

1 Gateway Integration

1.1 About This Guide

This guide provides the information required to integrate with our Payment Gateway and gives a
very basic example of code for doing so It is expected that you have some experience in server-
side scripting with languages such as PHP or ASP; or that an off-the-shelf software package is
being used that has inbuilt or plug-in support for our Gateway.

5

1.2 Terminology

The following terms are used throughout this guide:

Gateway

The Payment Gateway.

Merchant

The Merchant using the Gateway’s services.

Our
The Payment Gateway Provider.

You/your

 The Merchant or its representative performing the integration.

Acquirer
The bank or financial institution used by the Merchant.

Customer
A Customer of the Merchant making a payment.

Card
A payment credit, debit, prepayment or gift card issued by the Card Schemes.

Card Scheme
The operator of a payment Card network, such as Visa, Mastercard, et al.

Cardholder

The person who owns the payment Card, usually the Customer.

Issuer
The bank or financial institution that issued the payment Card to the Cardholder.

Merchant Account

An account on the Gateway mapped to an Acquirer-provided account.

Checkout
Third-party checkout solution such as PayPal, Amazon Pay other alternative payment methods.

Wallet
Third-party wallet solution such as Masterpass.

Hosted Payment Page (HPP)

A page hosted on our secure server used to collect Customer details.

Hosted Payment Field (HPF)
An individual form field hosted on our secure server used to collect sensitive Cardholder data.

6

1.3 Integration Methods

There are three methods of integration provided to process your transactions through the
Gateway, allowing for different levels of control and communication from your website.

1.3.1 Hosted Integration

The Hosted Integration method makes it easy to add secure payment processing to your
ecommerce business, using our Hosted Payment Pages (HPP). You can use this method if you do
not want to collect and store Cardholder data.

The Hosted Integration method works by redirecting the Customer to our Gateway’s Hosted
Payment Page, which will collect the Customer’s payment details and process the payment before
redirecting the Customer back to a page on your website, letting you know the payment outcome.
This allows you the quickest path to integrating with the Gateway.

The standard Hosted Payment Page is designed to be shown in a lightbox over your website and
styled with logos and colours to match. Alternatively, you can arrange for fully customised Hosted
Payment Pages to be produced that can match your website’s style and layout. These fully
customised pages are usually provided using a browser redirect, displaying full-page in the
browser, or can be displayed embedded in an iframe on your website.

For greater control over the customisation of the payment page, our Gateway offers the use of
Hosted Payment Fields, where only the individual input fields collecting the sensitive Cardholder
data are hosted by the Gateway while the remainder of the payment form is provided by your
website. These Hosted Payment Fields fit seamlessly into your payment page and can be styled to
match your payment fields. When your payment form is submitted to your server, the Gateway will
submit a payment token representing the sensitive card data it collected and your webserver can
then use the Direct Integration to process the payment without ever being in contact with the
collected Cardholder data. For more information please refer to our Hosted Payment Fields SDK
Guide.

7

1.3.2 Direct Integration

The Direct Integration works by allowing you to keep the Customer on your system throughout the
checkout process, collecting the Customer’s payment details on your own secure server before
sending the collected data to our Gateway for processing. This allows you to provide a smoother,
more complete checkout process to the Customer.

In addition to basic sales processing, the Direct Integration can be used to perform other actions
such as refunds and cancellations, which can provide a more advanced integration with our
Gateway.

1.3.3 Batch Integration

The Batch Integration is an enhancement to the Direct Integration, allowing you to send multiple
transactions in a single request and monitor their status. This is useful if you wish to capture
multiple transactions or collect multiple payments – for example, collecting subscription charges or
loan repayments.

In addition to basic sales processing, the Batch Integration can be used to perform other actions,
such as refunds and cancellations, which can provide a more advanced integration with our
Gateway.

Unlike the Hosted and Direct Integrations, the Batch Integration does not process transactions
sent to it immediately. Instead, the Gateway queues these transactions to be processed and
returns a batch reference number which can be used to download a file that contains the current
status of the transactions.

Batch Processing does not support transactions that require Customer interaction such as 3D
Secure transactions, or alternative payment methods with interactive Wallet or Checkout pages.

8

1.4 Integration Libraries

We can provide a range of libraries to help you to integrate with the Gateway.

These libraries include simple server-side classes in many popular programming languages,
through to client-side scripts to help with the integration of the Hosted Payment Page or Hosted
Payment Fields.

For more information about these libraries, please refer to appendix 23.7A-18.

9

1.5 Security and Compliance

Each method requires a different level of server security and compliance with the Payment Card
Industry Data Security Standard (PCI DSS).

If you use Hosted Payment Pages with the Hosted Integration or Hosted Payment Fields with the
Direct or Batch Integrations, then your webserver does not need an SSL certificate and you
require the lowest level of PCI DSS compliance.

If your website collects and/or stores sensitive Cardholder data, such as the card number (PAN) or
card security code (CVV/CV2), then your webserver must have an SSL certificate and serve all
payment forms using HTTPS. You will also need a higher level of PCI DSS compliance and to
complete a PCI validation form annually.

For more information, please see https://www.pcisecuritystandards.org/

10

Integration Details

1.5.1 HTTP Requests

A request can be sent to the Gateway by submitting a HTTP POST request to the integration URL
provided.

The request should have a Content-Type: application/x-www-form-urlencoded HTTP

header and the request should be name, value pairs URL encoded as per RFC 1738.

Example URL encoding:

merchantID=100001&action=SALE&type=1&amount=1001¤cyCode=826&countr

yCode=826&transactionUnique=55f6db1c81d95&orderRef=Test+purchase&custome

rPostCode=NN17+8YG&responseCode=0&responseMessage=AUTHCODE%3A350333&stat

e=captured&xref=15091702MG47WN32MM88LPK&cardNumber=4929+4212+3460+0821&c

ardExpiryDate=1215

Please note that the field names are cAsE sEnSiTiVe.

The response will use the same URL encoding and return the request fields in addition to any
dedicated response field. If the request contains a field that is also intended as a response field,
then any incoming request value will be overwritten by the correct response value.

11

1.5.2 Hosted HTTP Requests

When using the Hosted Integration, the request must be sent from the Customer’s web browser as
the response will be a HTML Hosted Payment Page (HPP), used to collect the Customer’s details.
The format of the request is designed so that it can be sent using a standard HTML form with the
data in hidden form fields. The browser will then automatically encode the request correctly
according to application/x-www-form-urlencoded format.

When the Hosted Payment Page has been completed and the payment processed, the
Customer’s browser will be automatically redirected to the URL provided via the redirectURL

field. The response will be returned to this page in application/x-www-form-urlencoded

format, using a HTTP POST request.

If the request contains a field that is also intended as a response field, then any incoming request
value will be overwritten by the correct response value.

An example of a Hosted Integration request is provided in appendix A-19.1 and sample code is
provided in appendix A-20.1.

1.5.3 Direct HTTP Requests

When using the Direct Integration, the response will be received in the same URL encoded format,
unless a redirectURL field is provided.

If a redirectURL field is provided, then the response will be a HTML page designed to redirect

a browser to the URL provided, using a HTTP POST request containing the response. This allows
you to collect the Cardholder’s payment details on your own server, using a HTML form which
POSTs to the Direct Integration, which then effectively POSTs the results back to this URL your
webserver, where you can display the transaction outcome.

If the request contains a field that is also intended as a response field, then any incoming request
value will be overwritten by the correct response value.

An example of a Direct Integration request is provided in appendix A-19.1 and sample code is
provided in appendix A-20.1.

12

1.5.4 Batch HTTP Requests

When using the Batch Integration, a single HTTP POST request can contain multiple individual
requests using the multipart/mixed content type with a boundary string specified. Within that

main HTTP request, each of the parts contains a nested Direct Integration HTTP request,
separated by the boundary string.

Each part should begin with a Content-Type: application/x-www-form-urlencoded

HTTP header and contain a single Direct Integration HTTP request, as documented in section
1.5.3.

You can optionally specify a Content-Id HTTP header to identify each part message uniquely; if

not provided, the Gateway will assign a unique id to each part. The Content-Id HTTP header is

returned in the response. The Gateway will not validate the uniqueness of any id provided. After
the mandatory Content-type and the optional Content-Id header, two carriage return/line

feed pairs must follow (i.e. \r\n\r\n). Any deviation from this structure might lead to the part being
rejected or incorrectly interpreted. The part request payload, formatted as a regular HTTP URL
encoded request, must follow the two-line breaks directly.

To reduce the size of large batch requests, the Gateway supports compression using a Content-

Encoding HTTP header with either a ‘gzip’ or ‘x-gzip’ value. This header can be provided in the

main request or in the part request or both.

An Authorization HTTP header can be used in the request to provide the username and

password of a Gateway Merchant Management System user account. If correct, the batch details
will be recorded as having been submitted by that user; if invalid, then the request will fail and
respond with a 401 (Unauthorised) HTTP status code.

The Gateway will respond in the same manner as the request with a multipart/mixed content

type; each part is the response to one of the requests in the batched request. In addition, the
response will contain a standard Location HTTP header, providing a URL from which further

batch update responses can be downloaded; and a standard Content-Disposition header,

allowing a browser to download the response to a file. If the request contained an
Authorization HTTP header, then the response will contain an X-P3-Token HTTP header

containing an authentication token that can be sent in future requests instead of the username and
password. The authentication token has a limited life span, but each future request will return a
new token and thus effectively rejuvenate the token’s life.

Like the parts in the request, each response part contains a HTTP response, including headers
and body. Each response part is preceded by a Content-Type HTTP header and Content-ID

HTTP header. In addition, an X-Transaction-ID HTTP header is added containing the

requests transaction id together with an X-Transaction-Response HTTP header containing a

textual description of the transaction processing status.

13

The Gateway will not process the transactions immediately but will queue them up to process over
time. The transactions may not be processed in the order provided, so should not have
interdependencies. Transactions will only appear in the Merchant Management System when they
have been processed. The status of queued transaction is only available by querying the status of
the batch.

The current status of a batch can be queried at any time by issuing a HTTP GET request to the
URL provided in the initial responses Location HTTP header.

An Authorization HTTP header must be provided in the status request, containing either the

username and password of a Gateway Merchant Management System user account or an
authentication token returned in the batch submission response’s X-P3-Token HTTP header. If a

valid username and password or a valid token is provided, then the response will be an updated
version of the initial submission response providing the current status of each transaction. The
response will only contain transactions that the authenticated user has permission to view.

An example of a Batch Integration request is provided in appendix A-19.3 and sample code is
provided in appendix A-20.3.

14

1.5.5 Handling Errors

When the Gateway is uncontactable due to a communications error, or problem with the internet
connection, you may receive a HTTP status code in the 500 to 599 range. In this situation, you
may want to retry the transaction. If you do choose to retry a transaction, then we recommend that
you perform a limited number of attempts with an increasing delay between each attempt.

If the Gateway is unavailable during a scheduled maintenance period, you will receive a HTTP
status code of 503 ‘Service Temporarily Unavailable’. In this situation, you should retry the
transaction after the scheduled maintenance period has expired. You will be notified of the times
and durations of any such scheduled maintenance periods in advance, by email, and given a time
when transactions can be reattempted.

If you are experiencing these errors, then we recommend you consider the following steps as
appropriate for the integration method being used:

• Ensure the request is being sent to HTTPS and not HTTP. HTTP is not supported and is
not redirected.

• Send transactions sequentially rather than concurrently.

• Configure your integration code with try/catch loops around individual transactions to
determine whether they were successful or not and retry if required, based on the return
code or HTTP status returned.

• Configure the integration so that if one transaction fails, the entire batch does not stop at
that point – i.e. log the failure to be checked and then skip to the next transaction rather
than stopping entirely.

15

1.5.6 Redirect URL

The redirectURL request field is used to provide the URL of a webpage on your server.

When provided, the Gateway will respond with a HTML page designed to redirect the Customer’s
browser to the URL provided, using a HTTP POST request containing the URL encoded response.

For the Hosted Integration, this will redirect the Customer from the Hosted Payment Page back to
this URL on your website.

For the Direct Integration, this allows you to collect the Cardholder’s payment details on your own
server using a HTML form that POSTs to the Direct Integration. which then effectively POSTs the
results back to this URL on your webserver, where you can display the transaction outcome. This
usage is not recommended as it makes it harder to sign the message.

The URL is mandatory for the Hosted Integration and optional for the Direct Integration. It is not
supported by the Batch Integration.

The redirectURL must be a fully qualified URL, containing at least the scheme and host

components.

1.5.7 Callback URL

The callbackURL request field allows you optionally to request that the Gateway sends a copy

of the response to an alternative URL. In this case, each response will then be POSTed to this
URL in addition to the normal response. This allows you to specify a URL on a secure shopping
cart or backend order processing system, which will then fulfil any order associated with the
transaction.

The URL is optional for both the Hosted Integration and the Direct Integration. It is not supported
by the Batch Integration.

The callbackURL must be a fully qualified URL, containing at least the scheme and host

components.

16

1.5.8 Field Formats

Most integration field values are either numerical or textual; and either free format or from a range
of predetermined values. Some field values are records or arrays of records.

Unless otherwise stated, numerical values are whole integer values with no decimal points.
Textual values should use the UTF-8 character set and will be automatically truncated if too long,
unless stated otherwise in the field’s description. Textual values may be transliterated1 when
sending to third parties such as Acquirers but the original value is stored by Gateway and
displayed in the Merchant Management System.

Field values should use the following formats unless otherwise stated in the field’s description:

Field Type Value Format

Monetary Amounts Either major currency units by providing a value that includes a single decimal point
such as ’10.99’; or in minor currency units by providing a value that contains no
decimal points such as ‘1099’.

Timestamps Date in the format ‘YYYY-MM-DD HH:MM:SS’

Dates Date in the format ‘YYYY-MM-DD’

Country Codes Either the ISO-3166-1 2-letter, 3-letter or 3-digit code.

Currency Codes Either the ISO-4217 3-letter or 3-digit code.

Records Records can be provided using the [XX] notation, where XX is the record’s field
name (sub-field). Records can be multi-dimensional or be sequentially indexed. For
example: to send a value for the sub-field Y in the integration field X, use the field
name X[Y]; however, to send a value for the sub-field Y in the fourth record for
integration field X, then use the field name X[4][Y] etc.

Serialised Records Records can be sent as a JSON, XML or URL serialised string. The first character of
the serialised string determines its format: ‘[‘ indicates JSON format; ‘<’ indicates
XML format; and anything else is assumed to be RFC 1738 URL encoded format.

Note: Nested records are useful when posting sub-fields direct from a HTML FORM. However,
unlike the main integration fields, a nested record’s sub-fields are not sorted when constructing the
signature and are processed in the order received. Serialised records can overcome any problems
caused by a nested record’s fields being received in a different order to that used when generating
the signature.

1 Transliteration involves the changing of character case, stripping of accents from characters and removal of unsupported
characters so that the values meet the requirements of the third-party.

17

1.6 Authentication

All requests must specify which Merchant Account they are for, using the merchantID request

field. In addition to this, the following security measures can be used:

1.6.1 Password Authentication

You can configure a password for each Merchant Account, using the Merchant Management
System (MMS). This password must then be sent in the merchantPwd field in each request. If an

incorrect password is received by the Gateway, then the transaction will be aborted and an error
response is returned.

1.6.2 Message signing

You must configure a signing secret phrase for each Merchant Account using the Merchant
Management System (MMS). Each request will need to be ‘signed’ by providing a signature

field containing a hash generated from the combination of the serialised request and this signing
secret phrase. On receipt, the Gateway will then re-generate the hash and compare it with the
one sent. If the two hashes are different then the request received must not be the same as that
sent and so the contents must have been tampered with and the transaction will be aborted and
an error response is returned.

The Gateway will also return hash of the response message in the returned signature field,

allowing you to create your own hash of the response (minus the signature field) and verify that

the hashes match.

If message signing is enabled, then the data POSTed to any callback URL will also be signed.

See appendix A-11 for information on how to create the hash.

1.6.3 Allowed IP addresses

You can configure a list of IP addresses using the Merchant Management System (MMS). Two
different address lists can be configured, one for standard requests, such as sales; and one for
advanced requests, such as refunds and cancellations. If a request is received from an address
other than those configured, then it will be aborted and an error response is returned.

Warning: Use of a password is discouraged in any integration where the transaction is posted from a form in the
client browser as the password may appear in plain text in code.

18

1.7 Supported Actions

All requests must specify what action they require the Gateway to perform, using the action

request field. The Direct and Batch Integrations support all actions; however, the Hosted
Integration only supports the basic payment actions.

1.7.1 SALE

This will create a new transaction and attempt to seek authorisation for a sale from the Acquirer. A
successful authorisation will reserve the funds on the Cardholder’s account until the transaction is
settled.

The captureDelay field can be used to state whether the transaction should be authorised only

and settled at a later date. For more details on delayed capture, refer to appendix A-8.

1.7.2 VERIFY

This will create a new transaction and attempt to verify that the card account exists with the
Acquirer. The transaction will result in no transfer of funds and no hold on any funds on the
Cardholder’s account. It cannot be captured and will not be settled. The transaction amount must

always be zero.

This transaction type is the preferred method for validating that the card account exists and is in
good standing; however, it cannot be used to validate that it has sufficient funds.

1.7.3 PREAUTH

This will create a new transaction and attempt to seek authorisation for a sale from the Acquirer. If
authorisation is approved, then it is immediately voided (where possible) so that no funds are
reserved on the Cardholder’s account. The transaction will result in no transfer of funds. It cannot
be captured and will not be settled.

This transaction type can be used to check whether funds are available and that the account is
valid. However, due to the problem highlighted below, it is recommended that Merchants use the
VERIFY action when supported by their Acquirer.

Warning: If the transaction is to be completed then a new authorisation must be sought using the SALE action. If
the PREAUTH authorisation could not be successfully voided, then this will result in the funds’ being authorised
twice effectively putting two holds on the amount on the Cardholder’s account and thus requiring twice the amount
to be available in the Cardholder’s account. It is therefore recommended only to PREAUTH small amounts, such
as £1.00 to check mainly account validity.

19

1.7.4 REFUND_SALE

This will create a new transaction and attempt to seek authorisation for a refund of a previous
SALE from the Acquirer. The transaction will then be captured and settled if and when appropriate.
It can only be performed on transactions that have been successfully settled. Up until that point, a
CANCEL or partial CAPTURE can be refunded or partially refunded from the original SALE
transaction. The previous SALE transaction should be specified using the xref field.

Partial refunds are allowed by specifying the amount to refund. Any amount must not be greater

than the original received amount minus any already refunded amount. Multiple partial refunds
may be made while there is still a portion of the originally received amount un-refunded.

The captureDelay field can be used to state whether the transaction should be authorised only

and settled at a later date. For more details on delayed capture refer to appendix A-8.

This action is not supported by the Hosted Integration.

1.7.5 REFUND

This will create a new transaction and attempt to seek authorisation for a refund from the Acquirer.
The transaction will then be captured and settled if and when appropriate. This is an independent
refund and need not be related to any previous SALE. The amount is therefore not limited by any
original received amount.

The captureDelay field can be used to state whether the transaction should be authorised only

and settled at a later date. For more details on delayed capture refer to appendix A-8.

This action is not supported by the Hosted Integration.

1.7.6 CAPTURE

This will capture an existing transaction, identified using the xref request field, making it available

for settlement at the next available opportunity. It can only be performed on transactions that have
been authorised but not yet captured. An amount to capture may be specified but must not

exceed the original amount authorised.

The original transaction must have been submitted with a captureDelay value that prevented

immediate capture and settlement leaving the transaction in an authorised but un-captured state.
For more details on delayed capture refer to appendix A-8.

This action is not supported by the Hosted Integration.

20

1.7.7 CANCEL

This will cancel an existing transaction, identified using the xref request field, preventing it from

being settled. It can only be performed on transactions, which have been authorised but not yet
settled, and it is not reversible. Depending on the Acquirer it may not reverse the authorisation and
release any reserved funds on the Cardholder’s account. In such cases, authorisation will be left to
expire as normal releasing the reserved funds. This may take up to 30 days from the date of
authorisation.

This action is not supported by the Hosted Integration.

1.7.8 QUERY

This will query an existing transaction, identified using the xref request field, returning the original

response. This is a simple transaction lookup action.

This action is not supported by the Hosted Integration.

21

2 New Transactions

You can perform a new transaction, such as a sale, by sending a request with the required action
and transaction type together with details about the order and payment method.

2.1 Request Fields

Field Name Mandatory? Description

merchantID Yes Your Gateway Merchant ID.

merchantPwd No1 Any password used to secure this account.
Refer to section 1.6.1 for details.

signature Yes2 Any hash used to sign this request.
Refer to section 1.6.2 for details.

action Yes The action requested.
Refer to section 1.7 for supported actions.

Possible values are: PREAUTH, VERIFY, SALE,
REFUND, REFUND_SALE.

amount Yes3 The amount of the transaction.

type Yes3 The type of transaction.
Refer to appendix A-13 for details.

Possible values are:
1 – E-commerce (ECOM)
2 – Mail Order/Telephone Order (MOTO).
9 – Continuous Authority (CA).

countryCode Yes3 Merchant’s location.

currencyCode Yes3 Transaction currency.

paymentMethod No The payment method required. For card payments
either omit this field or use the value card.

cardNumber Yes3,4 The primary account number (PAN) as printed on the
front of the payment card. Digits and spaces only.

cardExpiryMonth Yes3,4 Payment card’s expiry month from 1 to 12.

cardExpiryYear Yes3,4 Payment card’s expiry year from 00 to 99.

cardExpiryDate No3,4 Payment card’s expiry date in MMYY format as an
alternative to sending a separate
cardExpiryMonth & cardExpiryYear.

cardCVV Yes3,4 Payment card’s security number. The 3-digit number
printed on the signature strip.

22

Field Name Mandatory? Description

transactionUnique No3 You can supply a unique identifier for this
transaction. This is an added security feature to
combat transaction spoofing.

orderRef No3 Free format text field to store order details, reference
numbers, etc. for the Merchant’s records.

orderDate No Optional date to record with the transaction.

captureDelay No Number of days to wait between authorisation of a
payment and subsequent settlement.
Refer to appendix A-8 for details.

xref No5

Reference to a previous transaction.
Refer to appendix A-14 for details.

redirectURL No6 A public URL which the hosted form will redirect the
Customer’s browser after the transaction has been
completed. The URL must be fully qualified and
include at least the scheme and host components.
Refer to section 1.5.6 for details.

callbackURL No6 A non-public URL which will receive a copy of the
transaction result by POST.
The URL must be fully qualified and include at least
the scheme and host components.
Refer to section 1.5.7 for details.

remoteAddress No7 IP address of client making the transaction. This
should be provided where possible to aid fraud
prevention.

1 A password is not recommended if using the Hosted Integration, use a signature instead.
2 A signature is recommended if using the Hosted Integration.
3 Optional if an xref is provided as the value will be taken from the cross-referenced transaction.
4 Optional if using the Hosted Integration, any value provided will be used to initialise any HPP input field.
5 Mandatory for a REFUND_SALE request to specify the original SALE transaction.
6 Mandatory for Hosted Integration. Not supported by the Batch Integration.
7 Not supported by the Hosted Integration, which will automatically use the Customer’s IP address.

If the REFUND_SALE action is used, then the request may not attempt to change the payment
details, or the request will fail with a responseCode of 65542 (REQUEST MISMATCH) because
the refund must be made to the original card.

23

2.2 Response Fields

The response will contain all the fields sent in the request (minus any cardNumber and cardCVV)
plus the following:

Field Name Returned? Description

responseCode Always A numeric code providing the specific outcome.

Common values are:
0 - Successful / authorised transaction.
1 - Card referred – Refer to card issuer.
2 - Card referred – Special condition.
4 - Card declined – Keep card.
5 - Card declined.

Check responseMessage for more details of any

error that occurred.

responseStatus Always A numeric code providing the outcome category.

Possible values are:
0 – Authorisation Approved / No reason to decline
1 – Authorisation Declined.
2 – Authorisation Error / Transaction malformed.

responseMessage Always Message received from the Acquiring bank, or any
error message.

transactionID Always A unique ID assigned by the Gateway.

xref Always You may store the cross reference for repeat
transactions.
Refer to appendix A-14 for details.

state Always Transaction state.
Refer to appendix A-12.2 for details.

timestamp Always Time the transaction was created or last modified.

transactionUnique If supplied Any value supplied in the initial request.

authorisationCode On success Authorisation code received from Acquirer.

referralPhone If provided Telephone number supplied by Acquirer to phone for
voice authorisation when provided.

amountReceived On success Amount the Acquirer authorised. This should always
be the full amount requested.

amountRefunded If refund Total amount of original SALE that has so far been
refunded. Returned when action is REFUND_SALE.

orderRef If supplied Any value supplied in the initial request.

cardNumberMask Always Card number masked for Merchant storage.

cardTypeCode Always Code identifying the type of card used.

24

Field Name Returned? Description

Refer to appendix A-9 for details.

cardType Always Description of the type of card used.
Refer to appendix A-9 for details.

cardSchemeCode Always Code identifying the Card Scheme used.
Refer to appendix A-9 for details.

cardScheme Always Description of the card scheme used.
Refer to appendix A-9 for details.

cardIssuer Always Card Issues name (when known).

cardIssuerCountry Always Card issuing country’s name (when known).

cardIssuerCountryCode Always Card issuing country’s ISO-3166 2-letter code (when
known).

acquirerResponseCode Conditional Response code supplied by the Acquirer, maybe
prefixed with ‘G:’ if the Acquirer is itself a payment
Gateway.

acquirerResponseMessage Conditional Response message supplied the Acquirer.

acquirerResponseDetails Conditional Details about the Acquirer response containing any
error messages and codes. This can be used
together with the normal
responseCode/responseMessage response fields to

further determine the reason for any failure.

acquirerTransactionID Conditional Transaction identifier/reference used to identify the
transaction in the Acquirer’s system.

Other response fields may be returned as documented elsewhere in this guide. Undocumented
fields may be returned at the Gateways discretion but should not be relied upon.

The acquirerResponseXXXX fields are dependent on the Acquirer in use and are supplied for
additional information only.

The response is also POSTed to any URL provided by optional callbackURL.

25

3 Management Requests

You can perform a management action on an existing transaction, such as a capture or
cancellation, by sending a request with the required action together with the cross reference for
the transaction to act on.

Management request are supported by the Direct and Batch Integrations, they are not
supported by the Hosted Integration.

3.1 Request Fields

Field Name Mandatory? Description

merchantID Yes Your Gateway Merchant ID.

merchantPwd No1 Any password used to secure this account.
Refer to section 1.6.1 for details.

signature Yes2 Any hash used to sign this request.
Refer to section 1.6.2 for details.

action Yes The action requested.
Refer to section 1.7 for supported actions.

Possible values are: AUTHORISE, CAPTURE,
CANCEL, QUERY.

xref Yes

Reference to a previous transaction.
Refer to appendix A-14 for details.

amount No3 The amount to capture or refund.

callbackURL No A non-public URL which will receive a copy of the
transaction result by POST.
The URL must be fully qualified and include at least
the scheme and host components.
Refer to section 1.5.7 for details.

1 A password is not recommended if using the Hosted Integration, use a signature instead.
2 A signature is mandatory if using the Hosted Integration.
3 An amount is only required for partial refunds or partial captures.

26

3.2 Response Fields

Apart from the fields below, the response will be the same as for a new transaction but will contain
the details of the existing transaction.

Field Name Returned? Description

responseCode Always A numeric code providing the outcome of the
management request.

Check responseMessage for more details of any

error that occurred.

responseStatus Always A numeric code providing the outcome category.

Possible values are:
0 – Authorisation Approved / No reason to decline
1 – Authorisation Declined.
2 – Authorisation Error / Transaction malformed.

responseMessage Always Description of above response code.

action Always The requested action and original action separated
by a colon.
For example. CANCEL:SALE

Other response fields may be returned as documented elsewhere in this guide. Undocumented
fields may be returned at the Gateways discretion but should not be relied upon.

The response is also POSTed to any URL provided by optional callbackURL.
.

27

4 Hosted Payment Page Options

You can customise the appearance of the Hosted Payment Page by sending additional fields in
the request. Not all fields may be supported if you have a customised Hosted Payment Page.

4.1 Request Fields

Field Name Mandatory? Description

cardNumber No1 Default value for the Card number field.

cardCVV No2 Default value for the Card security number field.

cardExpiryMonth No Default value for the Card expiry month field.

cardExpiryYear No Default value for the Card expiry year field.

cardExpiryDate No Alternative to cardExpiryMonth/cardExpiryYear

customerName No Default value for the Cardholder’s name field.

customerAddress No Default value for the Cardholder’s address field.

customerPostcode No Default value for the Cardholder’s postcode field.

customerEmail No Default value for the Cardholder’s email field.

customerPhone No Default value for the Cardholder’s phone number field.

cardCVVMandatory No Force a Card security number to be entered.

customerAddressMandatory No Force a Cardholder’s address to be entered.

customerPostcodeMandatory No Force a Cardholder’s postcode to be entered.

customerEmailMandatory No Force a Cardholder’s email address to be entered.

customerPhoneMandatory No Force a Cardholder’s phone number to be entered.

formResponsive No Request the Hosted Payment Page adjust its layout
according to the browser display size etc.

Possible values are:
N – Set to standard mode.
Y – Set to responsive mode.

formAllowCancel No Request the Hosted Payment Page show a cancel
button to allow the payment to be cancelled resulting

in a transaction responseCode of 65576

(REQUEST CANCELLED).

paymentMethod No Request the Hosted Payment Page invoke an
alternative payment method on display without the
need for the Customer to select it.

28

allowedPaymentMethods No Comma separated list of paymentMethods supported

by the Merchant to show on Hosted Payment Page
where supported.

1 This should only be used by Merchants who are storing Card numbers as per PCI DSS requirements.
2 This should only be used for test purposed as Merchants are not allowed to store Card CVV numbers.

29

5 AVS/CV2 Checking

5.1 Background

AVS and CV2 fraud checking is available on all card transactions processed by the Gateway
where supported by the Acquirer.

These fraud prevention checks are performed by the Acquirer while authorising the transaction.
You can choose how to act on the outcome of the check (or even to ignore them altogether).

5.1.1 AVS Checking

The Address Verification System (AVS) uses the address details that are provided by the
Cardholder to verify that the address is registered to the card being used. The address and
postcode are checked separately.

5.1.2 CV2 Checking

CV2, CVV, or Card Verification Value is a 3-digit or 4-digit security code. The check verifies that
the code is the correct one for the card used.

For most cards, the CVV is a 3 digit number to the right of the signature strip. For American
Express cards, this is a 4 digit number printed, not embossed, on the front right of the card.

The AVS/CV2 checking preferences can be configured per Merchant Account within the Merchant
Management System (MMS). These preferences can be overridden per transaction by sending
one of the preference fields documented in section 5.3 that hold a comma separated list of the
check responses that should be allowed in order to continue to completion. Responses not in the
list will result in the transaction being declined with a responseCode of 5 (AVS/CV2 DECLINED).

AVS/CV2 fraud checking is not available with every Acquirer and must be enabled on your Merchant
Account before it can be used. Please contact support to find out whether your Acquirer supports it
and if it can be enabled on your Merchant Account.

30

5.2 Benefits and Limitations

5.2.1 Benefits

• Can be enabled with just a few extra integration fields.

• The results are available immediately and returned as part of the transaction.

• The checks can be managed independently, allowing you the utmost control over how the
results are used.

• The checks can be configured to decline a transaction automatically, where required.

• There are no extra costs for using AVS/CV2 checking with your transactions.

• Fully configurable within the Merchant Management System (MMS).

5.2.2 Limitations

• The AVS checks are mainly supported by Visa, MasterCard and American Express in the
USA, Canada and United Kingdom. Cardholders with a bank that does not support the
checks might receive declines due to the lack of data.

• Because AVS only verifies the numeric portion of the address and postcode, certain
anomalies such as apartment numbers and house names can cause false declines.

• The checks are meant for consumer cards. Company cards are not fully supported due to
the Acquirers’ not having access to this information.

31

5.3 Request Fields

These fields should be sent in addition to basic request fields in section 2.1.

Field Name Mandatory? Description

customerAddress Yes1 For AVS checking, this must be a registered billing
address for the card.

customerPostCode Yes2 For AVS checking, this must be a registered
postcode for the card.

cardCVV Yes3 For CVV checking, this must be the Card Verification
Value printed on the card.

avscv2CheckRequired No4 Is AVS/CV2 checking required for this transaction?

Possible values are:
N – Checking is not required.
Y – Abort if checking is not enabled.

cv2CheckPref No4 List of cv2Check response values that are to be

accepted; any other value will cause the transaction
to be declined.

Value is a comma separated list containing one or
more of the following: not known, not checked,
matched, not matched, partially matched.

addressCheckPref No4 List of addressCheck values that are to be

accepted; any other value will cause the transaction
to be declined.

Value is a comma separated list containing one or
more of the following: not known, not checked,
matched, not matched, partially matched.

postcodeCheckPref No4 List of postcodeCheck response values that are to

be accepted; any other value will cause the
transaction to be declined.

Value is a comma separated list containing one or
more of the following: not known, not checked,
matched, not matched, partially matched.

1 Mandatory if AVS address checking is required.
2 Mandatory if AVS postcode checking is required.
3 Mandatory if CV2 checking is required.
4 Overrides any Merchant Account setting configured via the Merchant Management System (MMS).

32

5.4 Response Fields

These fields will be returned in addition to the AVS/CV2 request fields in section 5.3 and the basic
response fields in section 2.2.

Field Name Returned? Description

avscv2CheckEnabled Always Is AVS/CV2 checking enabled for this Merchant
Account?

Possible values are:
N – Merchant account is not enabled.
Y – Merchant account is enabled.

avscv2ResponseCode If checks
performed

The result of the AVS/CV2 check.
Refer to appendix A-2 for details.

avscv2ResponseMessage If checks
performed

The message received from the Acquiring bank, or
any error message with regards to the AVS/CV2
check.
Refer to appendix A-2 for details.

avscv2AuthEntity If checks
performed

Textual description of the AVS/CV2 authorising
entity as described in appendix A-2.

Possible values are: not known, merchant host,
acquirer host, card scheme, issuer.

cv2Check If checks
performed

Description of the AVS/CV2 CV2 check as described
in appendix A-2.

Possible values are: not known, not checked,
matched, not matched, partially matched.

addressCheck If checks
performed

Description of the AVS/CV2 address check as
described in appendix A-2.

Possible values are: not known, not checked,
matched, not matched, partially matched.

postcodeCheck If checks
performed

Description of the AVS/CV2 postcode check as
described in appendix A-2.

Possible values are: not known, not checked,
matched, not matched, partially matched.

33

6 3-D Secure Authentication

6.1 Background

3-D Secure authentication is an additional fraud prevention scheme that is on all ecommerce card
transactions processed by the Gateway, where supported by the Acquirer.

It allows the Cardholder to assign a password to their card that is then verified whenever a
transaction is processed through a site that supports the use of the scheme. The addition of
password protection allows extra security on transactions that are processed online.

3-D Secure stands for Three Domain Server. There are 3 parties that are involved in the 3-D
Secure process:

• The company from which the purchase is being made.

• The Acquiring Bank (the bank of the company)

• VISA and Mastercard (the card issuers themselves)

The gateway supports 3-D Secure as implemented by Visa, Mastercard and American Express
and marketed under the brand names of Verified by VISA (VBV), Mastercard Secure Code (MSC)
and American Express (SafeKey). Implementations by JCB (J/Secure) and DCI (ProtectBuy) are
not currently supported.

3-D Secure is also the only fraud prevention scheme available that offers you liability cover for
transactions that are verified by the checks. This provides additional protection for transactions
using the scheme as distinct from those that do not.

The 3-D Secure preferences can be configured per Merchant Account within the Merchant
Management System (MMS). These preferences can be overridden per transaction by sending
one of the preference fields documented in section 6.5.1, which hold a comma separated list of the
check responses that should be allowed to continue to completion. Responses not in the list will
result in the transaction being declined with a responseCode of 65803

(3DS_NOT_AUTHENTICATED).

The Gateway supports both 3-D Secure version 1.0.2 and version 2.1.0 and will use the highest
version available. Version 2.2.0 will be supported in the future.

3-D Secure is supported by the Hosted and Direct Integrations. It is not supported by the
Batch Integration.

3-D Secure is not available with all Acquirers and must be enabled on your Merchant Account before
it can be used. Please contact support to find out whether your Acquirer supports it and if it can be
enabled on your Merchant Account.

34

6.2 Benefits and Limitations

6.2.1 Benefits

• The results are available immediately and returned as part of the transaction.

• The checks can be managed independently allowing you the utmost control over how the
results are used.

• The checks can be configured to decline the transaction automatically, where required.

• If authentication is completed, liability for any subsequent fraud-related chargeback on that
transaction shifts from you to the card issuer (but note the limitations below and check your
Acquirer’s Terms and Conditions fully on this point).

• There are no extra Gateway costs for using 3-D Secure. Your Acquirer may charge to add
this onto your business account; however you may also find that your transaction charges
are lower as a result of using 3-D Secure.

• Fully configurable within the Merchant Management System (MMS).

6.2.2 Limitations

• Authenticated 3-D Secure transactions do not guarantee a liability shift and chargebacks
can still occur. This is decided at the discretion of your Acquirer, with whom you should
check its policy.

• The gateway does not support 3-D Secure for JCB or Diner’s club cards.

• 3-D Secure transactions require a browser in order to display the Customer authentication
dialog.

35

6.3 Hosted Implementation

If your Merchant Account is set up for 3-D Secure, the Hosted Payment Page will automatically
attempt to display the 3-D Secure authentication page for the Customer’s bank.

The 3-D Secure authentication form is designed and controlled by the Customer’s Issuing bank,
but you can change the Merchant name and website address that is displayed on the form by
sending the merchantName and/or merchantWebsite request fields.

Any merchantWebsite must be a fully qualified URL containing at least the scheme and host

components.

36

6.4 Direct Implementation

If your Merchant account is set up for 3-D Secure, the Gateway will require further authentication
details provided by the 3-D Secure system.

6.4.1 Initial Request (Verify Enrolment)

If no 3-D Secure authentication details are provided in the initial request, the Gateway will
determine if the transaction is eligible for 3-D Secure by checking whether the card is enrolled in
the 3-D Secure scheme.

If the Gateway determines that the transaction is not eligible for 3-D Secure, then it will continue to
process it as a normal transaction without 3-D Secure, unless the threeDSRequired request

field indicates that the transaction should be aborted instead.

To support 3-D Secure, you must pass the threeDSRedirectURL field in the initial request. This
field must contain the complete URL to a web page on your server that the Access Control Server
(ACS) will HTTP POST the authentication results back to, when the authentication has been
completed.

For 3-D Secure v2 you must also provide details about the Cardholder’s device, using the fields
documented in the separate 3DS Integration Guide. You may also pass additional information
about the transaction and Cardholder, using the threeDSOptions field as documented in section
6.5.4. This extra information can be sent to help facilitate fraud checks by the ACS.

If the Gateway determines that the transaction is eligible, it will respond with a responseCode of

65802 (3DS AUTHENTICATION REQUIRED) and included in the response will be a
threeDSReqest containing data that should be sent to the ACS at the threeDSURL using a

HTTP POST request. The response will also contain a threeDSRef that can be used to continue

the transaction when the authentication has been completed.

6.4.2 Continuation Request (Check AuthenticationandAuthorise)

On completion of the 3-D Secure authentication the ACS will send the challenge results to the
threeDSRedirectURL provided in the initial request using a HTTP POST request. The contents of
this POST request should be return to the Gateway unmodified in the threeDSResponse field
together with the threeDSRef received in the initial response. This new request will check the
authentication results and either response with the details for a further challenge, send the
transaction to the Acquirer for approval or abort the transaction depending on the authentication
result and your preferences, either sent in the threeDSPref field or set in the Merchant

Management System (MMS).

If you would like an example of a 3-D Secure integration, please refer to our sample code
appendix A-20.2.

37

6.4.3 Multiple Challenges and Frictionless Flow

The API supports the issuing of multiple challenges where the continuation request may indicate
the requirement to perform another challenge by responding with a responseCode of 65802

(3DS AUTHENTICATION REQUIRED) and including a further threeDSReqest, threeDSURL

and threeDSRef. When this happens, these further challenge details should be treated the same

as the first and POSTed to the ACS.

For 3-D Secure version 1, a single challenge is performed. However, for version 2, there may be
zero, one or two challenges.

With 3-D Secure version 2, an initial device fingerprinting method might have to be invoked on the
ACS, the results of which are used to determine whether the Cardholder must complete a
challenge or whether a frictionless flow can be achieved where the transaction can continue
unchallenged.

6.4.4 Cardholder Challenge

The Cardholder challenge takes place with the Cardholder’s browser, usually within an IFRAME
embedded on the payment form. To start the challenge, the IFRAME should contain a HTML
FORM with hidden INPUT fields storing the threeDSRequest name/value data. JavaScript should
then be used to submit the form automatically, causing the form data to be sent via a HTTP POST
to the threeDSURL.

The IFRAME should be of sufficient size to display the ACS challenge form. For 3-D Secure
version 1, this is a minimum size of 390x400 pixels. However, version 2 allows different sizes to be
specified giving the Merchant more flexibility in the design of its payment form. The required size
can be set using the ‘challengeWindowSize’ option, passed in the threeDSOptions field in the
initial request.

6.4.5 Device Fingerprinting Challenge

The device fingerprinting method invocation is handled in the same way as a normal Cardholder
challenge, except that it can be done silently in a hidden IFRAME, invisible to the normal payment
flow. This silent device fingerprinting method request can be determined by the presence of a
threeDSMethodData element in the threeDSRequest data. This method should take no longer
than 10 seconds and therefore if the ACS has not POSTed the results back within 10 seconds
then the browser can stop waiting and the transaction can be continued as normal but the
threeDSResponse field should be returned indicating the timeout by including a
threeDSMethodData element with the value of 'timeout'.

6.4.6 External Authentication Request

You can choose to obtain the 3-D Secure authentication details from a third-party, in which case
they should provide them as part of a standard request. If the Gateway receives valid third-party
authentication details, then it will use those and not attempt to contact the 3-D Secure system
itself.

38

6.5 Request Fields

6.5.1 Initial Request (Hosted and Direct Integration)

These fields should be sent in addition to basic request fields in section 2.1.

Field Name Mandatory? Description

merchantName No1 Merchant name to use on 3DS form.

merchantWebsite No1 Merchant website to use on 3DS form.
The website must be a fully qualified URL and
include at least the scheme and host components.

threeDSRequired No1 Is 3DS required for this transaction?

Possible values are:
N – 3DS is not required.
Y – Abort if 3DS is not enabled.

threeDSCheckPref No1 List of threeDSCheck response values that are to

be accepted, any other value will cause the
transaction to be declined.

Value is a comma separated list containing one or
more of the following values: ‘not known', 'not
checked', ' not authenticated', 'attempted
authentication', 'authenticated’.

threeDSRedirectURL Yes A URL on the Merchant’s server to which the ACS
can POST the challenge results, thus redirecting the
challenge IFRAME to this page.

threeDSOptions No Further 3-D Secure options that can be used by the
ACS for advance fraud checking.

1 Overrides any Merchant Account setting configured via the Merchant Management System (MMS).

39

6.5.2 Continuation Request (Direct Integration)

These fields may be sent alone1.

Field Name Mandatory? Description

threeDSRef Yes

The value of the threeDSRef field in the initial

Gateway response.

threeDSResponse Yes The data POSTed back from the ACS when the
challenge has completed.

1 Note: It is only necessary to send the threeDSRef and the threeDSResponse in the continuation request, because the
threeDSRef will identify the Merchant Account and initial request. The message does not need to be signed. However, you
can send any of the normal request fields to modify or supplement the initial request. Any card details and transaction
amount sent in the second request must match those used in the first request, else the second request will fail with a
responseCode of 64442 (REQUEST MISMATCH).

40

6.5.3 External Authentication Request (Direct Integration)

These fields should be sent in addition to basic request fields from section 2.1.

Field Name Mandatory? Description

threeDSEnrolled If 3DS enabled The 3DS enrolment status for the credit card.
Refer to appendix A-3 for details.

Possible values are:
Y – Enrolled.
N - Not Enrolled.
U - Unable to Verify.

threeDSAuthenticated If 3DS enrolled The 3DS authentication status for the credit card.
Refer to appendix A-3 for details.

Possible values are:
Y - Authentication Successful.
N - Not Authenticated.
U - Unable to Authenticate.
A - Attempted Authentication.

threeDSXID If 3DS
authenticated

The unique identifier for the transaction in the 3DS
system.

threeDSECI If 3DS
authenticated

The Electronic Commerce Indicator (ECI).

threeDSCAVV If 3DS
authenticated

The Cardholder Authentication Verification Value
(CAVV).

Note: If 3-D Secure is not enabled for the Merchant Account, then any 3-D Secure authentication
fields sent in the request are ignored and the transaction is processed as normal without 3-D
Secure.

41

6.5.4 3-D Secure 2 Options (Hosted and Direct Integration)

The following options may be sent in the threeDSOptions field to help customise the 3-D Secure
2 experience or can be used by the ACS for advance fraud checking. There are currently no
options supported for 3-D Secure 1.

Some options are automatically initialised by the Gateway from other standard integration fields as
shown in square brackets in the options description. The standard integration field should be used
rather than the option, apart from the very rare circumstances where the two must have different
values.

The field may be sent as a URL encoded string, JSON encoded string or an array of key/value
pairs.

Field Name Description

accountAgeIndicator Cardholder Account Age Indicator

accountChangeDate Cardholder Account Change Date

accountChangeIndicator Cardholder Account Change Indicator

accountDate Date Cardholder account opened

accountDayTransactions Number of account transactions in the last day

accountId Cardholder Account Identifier

accountPasswordChangeDate Cardholder Account Password Change Date

accountPasswordChangeIndicator Cardholder Account Password Change Indicator

accountPurchaseCount Cardholder Account Purchase Count

accountProvisioningAttempts Number of account provisioning attempts in the last day

accountType Indicates the type of account

accountYearTransactions Number of account transactions in the last year

acquirerBIN Acquiring institution identification code
(Default on file)

acquirerCountryCode Acquirer country code when the Acquirer country differs from
the Merchant country and the Acquirer is in the EEA (this
could mean that the transaction is covered by PSD2).
(Default on file)

acquirerMerchantID Acquirer-assigned merchant identifier
(Default on file)

acsChallengeMandatedIndicator ACS Challenge Mandated Indicator

addressMatch Shipping and Billing addresses are the same

42

authenticationECI Value to be passed in the authorisation message

authenticationIndicator Indicates the type of authentication request

billingAddressCity The city of the address
[customerTown]

billingAddressCountryCode The country of the address
[customerCountryCode]

billingAddressLine1 The first line of the street address or equivalent local portion
of the address
[customerAddress]

billingAddressLine2 The second line of the street address or equivalent local
portion of the address

billingAddressLine3 The third line of the street address or equivalent local portion
of the address

billingAddressPostcode The ZIP or other postcode of the address
[customerPostcode]

billingAddressState The state or province of the address

browserAcceptHeader HTTP accept header sent from the Cardholder’s browser
[browserAcceptContent]

browserIPAddress IP address of the Cardholder’s browser
[remoteAddress]

browserJavaEnabledVal Ability of the Cardholder’s browser to execute Java
[browserCapabilities]

browserJavaScriptEnabled Ability of the Cardholder’s browser to execute JavaScript
[browserCapabilities]

browserLanguage The Cardholder’s browser language
[browserAcceptLanguage]

browserScreenColorDepth The screen colour depth of the Cardholder’s browser
[browserScreenResolution]

browserScreenHeight The screen height of the Cardholder’s browser
[browserScreenResolution]

browserScreenWidth The screen width of the Cardholder’s browser
[browserScreenResolution]

browserTimeZone The timezone offset of the Cardholder’s browser
[browserTimeZone]

browserUserAgent The User-Agent provided by the Cardholder’s browser
[browserUserAgent]

cardholderEmail The Cardholder’s email address
[customerEmail]

43

cardholderHomePhone The Cardholder’s home phone number
[customerPhone]

cardholderMobilePhone The Cardholder’s mobile phone number
[customerMobile]

cardholderName Name of the Cardholder
[customerName]

cardholderWorkPhone The Cardholder’s work phone number

challengeWindowSize Challenge window size
(Default 02 – 390x400)

deliveryEmailAddress Merchandise Delivery Email Address
[deliveryEmail]

deliveryTimeframe Merchandise Delivery Timeframe

giftCardAmount Total gift card(s) amount

giftCardCount Total number of gift cards purchased

giftCardCurrencyCode Gift Card Currency

instalmentPaymentData Max authorisations permitted for instalment payments

merchantCategoryCode Merchant category code
[merchantCategoryCode]

merchantCountryCode Country code of the merchant
[countryCode]

merchantFraudRate Merchant fraud rate in the EEA (all EEA card fraud divided by
EEA card volumes) calculated as per PSD2 RTS. This value
is sent to Mastercard only who will not calculate or validate
the fraud score:
Value will be a numeric value, between 1 and 99,
representing the fraud rate, such as:

• 1 (less than or equal to 1 basis point [bp], which is
0.01%)

• 2 (between 1 bp +- and 6 bps)

• 3 (between 6bps +- and 13 bps)

• 4 (between 13 bps +- and 25 bps)

• 5 (greater than 25 bps)

merchantName Merchant name
[merchantName]

paymentAccountAge Payment Account Age

paymentAccountAgeIndicator Payment Account Age Indicator

preOrderDate Expected date pre-ordered purchase will be available

preOrderPurchaseIndicator Pre-Order Purchase Indicator

44

priorAuthData 3DS Requestor Prior Transaction Authentication Data

priorAuthMethod 3DS Requestor Prior Transaction Authentication Method

priorAuthTimestamp 3DS Requestor Prior Transaction Authentication Timestamp

priorReference 3DS Requestor Prior Transaction Reference

recurringExpDate Recurring expiration date

recurringFrequency The number of days between recurring payments

reorderItemsIndicator Reorder Items Indicator

reqAuthData 3DS Requestor Authentication Data

reqAuthMethod 3DS Requestor Authentication Method

reqAuthTimestamp 3DS Requestor Authentication Timestamp

requestorChallengeInd 3DS Requestor Challenge Indicator

requestorID Directory server assigned 3DS Requestor identifier
(Default on file)

requestorName Directory server assigned 3DS Requestor name
(Default on file)

requestorURL 3DS Requestor website or customer care site
[merchantWebsite]

secureCorporatePaymentIndicator Indicates dedicated payment processes and procedures were
used, potential secure corporate payment exemption applies.

serverOperatorID 3DS Server identifier
(Default on file)

serverRefNumber Assigned server reference number
(Default on file)

shipAddressUsageDate Shipping address first usage date

shipAddressUsageIndicator Shipping address usage indicator

shipIndicator Shipping method indicator

shipNameIndicator Shipping Name Indicator

shippingAddressCity The city of the address
[deliveryTown]

shippingAddressCountryCode The country of the address
[deliveryCountryCode]

shippingAddressLine1 The first line of the street address or equivalent local portion
of the address
[deliveryAddress]

45

shippingAddressLine2 The second line of the street address or equivalent local
portion of the address

shippingAddressLine3 The third line of the street address or equivalent local portion
of the address

shippingAddressPostcode The ZIP or other postcode of the address
[deliveryPostcode]

shippingAddressState The state or province of the address

suspiciousAccountActivity Suspicious account activity indicator

transactionType Transaction Type
(Default 01 – Goods/Service Purchase)

whitelistStatus Whitelist Status

46

6.6 Response Fields

6.6.1 Initial Response (Direct Integration)

These fields will be returned in addition to the request fields from section 6.5.1 and the basic
response fields in section 2.2.

Field Name Returned? Description

threeDSEnabled Always Is 3DS enabled for this Merchant Account?

Possible values are:
N – Merchant Account is not enabled.
Y – Merchant Account is enabled.

threeDSXID If 3DS enabled The unique identifier for the transaction in the 3DS
system.

threeDSVETimestamp If 3DS enabled The time the card was checked for 3DS enrolment
and any initial challenge determined.

threeDSEnrolled If 3DS enabled The 3DS enrolment status for the credit card. Refer
to appendix A-3 for details.

Possible values are:
Y – Enrolled.
N - Not Enrolled.
U - Unable to Verify.
E - Error Verifying Enrolment.

threeDSRef If 3DS
enabled

Value to return in the continuation request.

threeDSURL If 3DS enrolled The URL of the ACS to which the challenge data
should be sent via a HTTP POST request from the
Cardholder’s browser.

threeDSRequest If 3DS enrolled The challenge data that should be sent to the ACS
via HTTP POST request from the Cardholder’s
browser.

47

6.6.2 Continuation Response (Direct Integration)

These fields will be returned in addition to the request fields from section 6.5.1; the initial response
fields in section 6.6.1; and the basic response fields in section 2.2.

Field Name Returned? Description

threeDSResponse If 3DS enrolled The data POSTed back from the ACS when the
challenge has completed.

threeDSCATimestamp If 3DS enrolled The time the last challenge was checked.

threeDSAuthenticated If 3DS enrolled The 3DS authentication status for the credit card.
Refer to appendix A-3 for details.

Possible values are:
Y - Authentication Successful.
N - Not Authenticated.
U - Unable to Authenticate.
A - Attempted Authentication.
E - Error Checking Authentication.

threeDSECI If 3DS
authenticated

This contains a two-digit Electronic Commerce
Indicator (ECI) value, which is to be submitted in a
credit card authorisation message.

This value indicates to the processor that the
Customer data in the authorisation message has
been authenticated.

The data contained within this property is only valid if
the threeDSAuthenticated value is Y or A.

threeDSCAVV If 3DS
authenticated

This contains a 28-byte Base-64 encoded
Cardholder Authentication Verification Value (CAVV).

The data contained within this property is only valid if
the threeDSAuthenticated value is Y or A.

threeDSErrorCode If 3DS error Any error response code returned by the ACS if
there is an error in determining the card’s 3DS
status.

threeDSErrorDescription If 3DS error Any error response description returned by the ACS
if there is an error in determining the card's 3DS
status.

48

6.6.3 External Authentication Response (Direct Integration)

These fields will be returned in addition to the request fields from section 6.5.3 and the basic
response fields in section 2.2.

Field Name Returned? Description

threeDSEnabled Always Is 3DS enabled for this Merchant Account?

Possible values are:
N – Merchant Account is not enabled.
Y – Merchant Account is enabled.

Note: If 3-D Secure is not enabled for the Merchant Account, then any 3-D Secure authentication
fields sent in the request are ignored and the transaction is processed as normal without 3-D
Secure.

6.6.4 Cardholder Information (Hosted and Direct Integration)

In the case of a frictionless flow, the card Issuer may sometimes wish to provide a message to the
Cardholder. In this case, the threeDSResponseMessage will start with the text ‘Cardholder Info: ‘
and be followed by the message from the card Issuer.

49

7 Risk Checking

7.1 Background

The Gateway is integrated with Kount, the leading solution for digital fraud prevention.

If you have an existing account with Kount, or sign up for one, you can request that the Gateway
pass your transactions to them for risk checking before they are sent to the Acquirer for
authorisation.

Kount’s patented fraud prevention technology combines device fingerprinting; supervised and
unsupervised machine learning; a robust policy and rules engine; business intelligence tools; and
a web-based case-management and investigation system.

Their team of experts can help you understand and identify the rules necessary to optimise your
protection, as well as provide ongoing support. To get the most out of your investment, you may
want to dedicate an individual or a team to monitor your rules and ensure they continue to work as
intended.

The risk checking preferences can be configured per Merchant Account within the Merchant
Management System (MMS). These preferences can be overridden per transaction by sending
new preferences as documented in section 7.4.1. You must use the Kount management portal to
configure your risk parameters and thresholds.

Risk checking is an advanced feature and must be enabled on your Merchant Account before it can be
used. Please contact support if you wish to have it enabled.

50

7.2 Benefits and Limitations

7.2.1 Benefits

• The results are available immediately and returned as part of the transaction.

• The checks can be managed independently, allowing you the utmost control over how the
results are used.

• The checks can be configured to decline the transaction automatically where required.

• Leverage the ability to review transactions and decide what course of action to take.

• The checks can reduce chargebacks by blocking transactions made without the
Cardholder’s consent that would have resulted in the Cardholder raising a chargeback to
recover the fraudulent transaction amount.

• Providing enhanced risk checking increases Customer confidence and thus increases the
likelihood of their making a purchase.

• Fully configurable within the Merchant Management System (MMS).

7.2.2 Limitations

• Checking cannot prevent all fraudulent transactions and could even prevent some non-
fraudulent transactions.

• There are additional fees associated with having a Kount account.

• You will have to spent time analysing your transactions and establishing fraud rules.

51

7.3 Implementation

When risk checking is required, each transaction will be sent to Kount for checking and the result
of the check will be returned in the riskCheck response field with one of the following values:

• not known - the checks could not be performed due to our error

• not checked - the checks could not be performed by Kount

• approve - the transaction is not risky and should proceed

• decline - the transaction is risky and should be declined

• review - the transaction is risky but proceed with caution

• escalate - the transaction is risky but proceed with caution

The actions to take for each riskCheck response can be configured for the Merchant Account,

using the Merchant Management System. Alternatively, the preferred actions can be passed with
the transaction request in the riskCheckPref field. The possible actions are as follows:

• continue - continue processing as normal

• authonly - authorise only, don't capture

• decline1 - decline without reason

• decline2 - decline with reason

• finished - abort with reason

The continue action allows the transaction to continue as normal and be sent to the Acquirer for
authorisation. A riskCheck value of approve will always be treated as if the action was

continue, regardless of whether the preferences say otherwise.

The authonly action allows the transaction to be authorised but not automatically captured giving
you time to review it and decide whether you want to take the risk and capture the transaction or
assume it to be fraudulent and cancel it.

The decline1 and decline2 actions will cause the transaction to be declined. Both decline the
transaction and return with a responseCode of 5 (DECLINED) and a responseMessage of

‘DECLINED’ or ‘RISK DECLINED’ respectively. The first action should be used if you don’t wish to
alert the Customer to the fact that you suspected that their transaction was fraudulent and
declined it for that reason.

The finished action will abort the transaction, causing it to return with a responseCode of either
65857 (RISK_CHECK_ERROR) or 65862 (RISK_CHECK_DECLINED) depending on whether an
error prevented the transaction from being checked by Kount, resulting in a riskCheck value of

‘not known’ or ‘not checked’.

The riskCheckPref field can be provided in the request to override any settings configured in

the Merchant Management System (MMS) for this Merchant Account. The value should be a
comma separated list of result=actions pairs. If a result is not specified in the list, then an action of
decline1 is assumed. For example: ”decline=decline1,review=authonly,escalate=authonly”.

52

7.4 Request Fields

7.4.1 Request Fields

These fields should be sent in addition to basic request fields in section 2.1.

Field Name Mandatory? Description

riskCheckRequired No1 Is risk checking required for this transaction?

Possible values are:
N – risk checking is not required.
Y – risk checking is required.

riskCheckPref No1 List of riskCheck response values and the action to

be taken for those responses.

Value is a comma separated list containing one or
more of the following risk check results and
associated actions:
Results: not known, not checked, approve,
decline, review, escalate.
Actions: continue, decline1, decline2, authonly,
finished.

riskCheckOptions No Record containing options used to customise the risk
checking. Refer to section 7.4.2 for values.

1 Overrides any Merchant Account setting configured via the Merchant Management System (MMS).

53

7.4.2 Risk Check Options

The following options may be sent in the riskCheckOptions field to customise the risk checking.
Where possible, the options will be initialised from standard integration fields as shown in square
brackets in the option’s description.

Field Name Description

IPAD Customer’s IPv4 address (X.X.X.X).
[remoteAddress]

MACK Merchants acknowledgement to ship/process the order (Y or N).

SESS Unique Session ID1. Used to link to Kount’s browser device data collector.

ANID Automatic Number Identification (ANI) submitted with order.

CASH Total cash amount in currency submitted.

ORDR Merchant’s Order Number.
[merchantOrderRef]

UNIQ Merchant assigned account number for Customer.
[merchantCustomerRef]

EPOC Date Customer account was created by merchant.

NAME Customer’s name (or name submitted with the order).
[customerName]

GENDER Customer’s gender (M or F)
[customerGender]

BPREMISE Customer’s billing address premises name (UK only).
[customerCompany]

BSTREET Customer’s billing address street (UK only).
[customerStreet, customerAddress]

B2A1 Customer’s billing address county/state.
[customerAddress]

B2A2 Customer’s billing address county/state.
[customerAddress2]

B2CI Customer’s billing address county/state.
[customerTown]

B2ST Customer’s billing address county/state.
[customerCounty]

B2PC Customer’s billing address postcode.
[customerPostcode]

B2CC Customer’s billing address country code.
[customerCountryCode]

54

Field Name Description

EMAL Cardholder’s email address.
[customerEmail]

B2PN Cardholder’s phone number.
[customerPhone]

DOB Cardholder’s date of birth.
[customerDateOfBirth, recipientDateOfBirth]

S2NM Name of person receiving the delivery.
[deliveryName]

SPREMISE Delivery premises name (UK only).
[deliveryCompany]

SSTREET Delivery street address (UK only).
[deliveryStreet, deliveryAddress]

S2A1 Delivery address line 1.
[deliveryAddress]

S2A2 Deliver address line 2.
[deliveryAddress2]

S2CI Delivery town/city.
[deliveryTown]

S2ST Delivery county/state.
[deliveryCounty]

S2PC Delivery postcode.
[deliveryPostcode]

S2CC Delivery country code.
[deliveryCountryCode]

S2EM Delivery email address.
[deliveryEmail]

S2PN Phone number of delivery location.
[deliveryPhone]

SHTP Shipping type.
[shippingType, shippingMethod]

PROD_TYPE[XX] Type for the XXth item purchased.
[items.XX.description]

PROD_ITEM[XX] SKU for the XXth item purchased.
[items.XX.productCode]

PROD_DESC[XX] Description XXth item purchased.
[items.XX.description]

55

Field Name Description

PROD_QUANT[XX] Quantity of XXth item purchased.
[items.XX.quantity]

PROD_PRICE[XX] Unit amount for XXth item purchased.
[items.XX.amount]

UDF[XXXX] User defined field XXXX.

1 SESS, the unique session id, is automatically sent from the Kount Device Collector loaded in the Hosted Payment Page.

For further information on the options, refer to the Kount Integration documentation:
https://kount.github.io/docs/ris-data-submission/.

The options should be passed as either a nested record or serialised record as described in
section 1.5.8. The option names are case sensitive.

https://kount.github.io/docs/ris-data-submission/

56

7.5 Response Fields

These fields will be returned in addition to the risk check request fields in section 7.4 and the basic
response fields in section 2.2.

Field Name Returned? Description

riskCheckEnabled Always Is risk checking enabled for this Merchant Account?

Possible values are:
N – Merchant account is not enabled.
Y – Merchant account is enabled.

riskCheck If checked The result of the risk check.

Possible values are:
approve – ok, recommend proceed to authorisation.
decline – probably fraudulent, recommend decline.
review – possibly fraudulent, recommend review.
escalate – possibly fraudulent, recommend review.

riskCheckDetails If checked The raw response received from Kount minus any
sensitive data.

riskCheckResponseCode If checked Response code for the risk processing stage.

riskCheckResponseMessage If checked Response message for the risk processing stage.

57

8 Payment Facilitators

8.1 Background

If you are a Payment Facilitator (PayFac/PF) or Independent Sales Organisation (ISO), then you
must send additional fields to identify yourself and your sub-merchants.

These fields must be sent with every new transaction; however, they can be cloned from an
existing transaction if using an xref as described in appendix A-16.

8.2 Request Fields

Field Name Mandatory? Description

facilitatorID Yes Your facilitator identifier as assigned by the Scheme.

facilitatorName No1 Your trading name as registered with the Scheme.

isoID No1 Your ISO identifier as assigned by the Scheme.

subMerchantID No1 Unique identifier assigned to this SubMerchant.

merchantXXXX No1 SubMerchant details as documented in section 17.2.

statementNarrativeX No1 Statement details as documented in section 10.1.2.

1 Which additional fields are mandatory will depend on your Acquirer.

Payment Facilitator support is not available with every Acquirer. Please contact support to find out if
your Acquirer supports it and what fields are required.

58

9 UK MCC 6012 Merchants

9.1 Background

Every Merchant Account has a category code, also known as the MCC code, attached to it. This
category code identifies the market that the payment is related to, allowing issuing banks to
identify what product or service is, or was, being provided.

The merchant category code 6012 is related to payments taken for financial institutions, primarily
those merchants that deal with loan payments or other credit-related activities. According to Visa,
this is the most fraudulent merchant category in the UK market due to compromised debit card
details being used to pay or transfer balances to other cards. Acquirers are therefore unable to
confirm whether a payment is genuine, despite matching the full CVV2 with AVS.

To address this situation, issuing banks have requested additional payment information to be
provided with payment requests in order to verify that the cardholder is knowingly entering into a
credit-related contractual agreement with the merchant.

If you are a Merchant who has been assigned the MCC 6012 you must collect the following data
for the primary recipient for each UK domestic Visa or Mastercard transaction1:

• Unique account identifier for the loan or outstanding balance funded. For example, the loan
account number or the PAN (Primary Account Number) if it is a credit card balance.

• Last name (family name)

• Date of Birth (D.O.B)

• Postcode

Primary recipients are the entities (people or organisations) that have a direct relationship with the
financial institution. Also, these primary recipients have agreed to the terms and conditions of the
financial institution.

The new fields are not currently mandatory. However, some Acquirers are now declining
transactions that are missing this information and so we recommend the information is always
provided, even if your Acquirer doesn’t currently mandate them.

If you are not a UK MCC 6012 Merchant or the payment is not a UK domestic one, then you need
not provide these additional authentication details though the Gateway will accept them if you do.

1 The additional details are currently only required by Visa and Mastercard however we recommend sending for all card
types in order to be prepared for when other card Schemes follow suite.

59

9.2 Request Fields

To comply with the rules, an MCC6012 Merchant must send these additional fields:

Field Name Mandatory? Description

merchantCategoryCode Yes1 Merchant’s VISA MCC (should be 6012).

receiverName Yes Surname only - up to 6 letters allowed.

receiverAccountNo Yes Account number. If a PAN is supplied only the first 6
and last 4 digits will be used.

receiverDateOfBirth Yes Primary recipient’s date of birth.

receiverPostcode Yes Primary recipient’s postcode.
(Only the district is required but full postcodes are
accepted, therefore ‘W12 8QT’ or just ‘W12’ are
acceptable values).

1 Only required if the Merchants Category Code is not configured on their gateway account.

60

10 Billing Descriptor

10.1 Background

The Billing Descriptor is how your details appear on the Cardholder’s statement. It is set up with
the Acquirer when the Merchant Account is opened. It is used by the Cardholder to identify who a
payment was made to on a particular transaction.

Selecting a clear Billing Descriptor is important for you to avoid a chargeback when the Cardholder
does not recognise the name on the transaction.

10.1.1 Static Descriptor

The Static Descriptor is the descriptor agreed between yourself and your Acquirer when the
Merchant Account is opened. The descriptor used is typically your trading name, location and
contact phone number.

10.1.2 Dynamic Descriptor

The Dynamic Descriptor is a descriptor sent with the transaction that includes details on the goods
purchased or service provided, this is often used by large companies that provide many services
and where the brand of the service is more familiar than the company name. The Dynamic
Descriptor usually replaces any Static Descriptor on a per transaction basis.

Not all Acquirers accept Dynamic Descriptors and, for those that do, the required format varies.
Often, your Merchant name is shortened to three (3) letters, followed by an asterisk (*), followed
by a short description of the service or product that the business provides. This field typically has a
limit of twenty-five (25) characters including the phone number.

For more information on whether your Acquirer allows Dynamic Descriptor and the format in which
they should be sent, please contact customer support.

https://en.wikipedia.org/wiki/Business

61

10.2 Request Fields

The Dynamic Descriptor is built using one or more of the following narrative fields.

Field Name Mandatory? Description

statementNarrative1 No Merchant’s name.

statementNarrative2 No Product, service or other descriptive info.

62

11 Surcharges

11.1 Background

Surcharges are an additional charge that you can apply to the transactions that are processed
through your Merchant Account.

Transactions that are sent for authorisation are subject to processing charges from your Acquirer
and surcharges enable you to pass the processing charges that you incur on to your Customers.

You may, for example, be charged a fixed amount for debit card transactions and a percentage
amount for credit card transactions. Consequently, the Gateway gives you the option to add both a
fixed amount and percentage amount when applying a surcharge.

Surcharges should only be added to cover the processing charges that are incurred by your
business. There is no Gateway imposed limit to the value of the surcharges that can be added to
your transaction, although there are legal requirements. As a rule, the surcharge must not exceed
the processing costs that you pay.

Some businesses apply surcharges to cover the costs that they incur; while others use the
surcharges to subsidise the charges.

Surcharge amounts may be limited or illegal in your jurisdiction. For example, surcharging is illegal in
the European Union and many US states. It is up to you to check with your Acquirer and comply with
any laws.

Surcharges is an advanced feature and must be enabled on your Merchant Account before it can be
used. Please contact support if you wish to have it enabled.

63

11.2 Implementation

11.2.1 Surcharge Rules

The surchargeRules field allows you to provide multiple rules specifying what surcharges should
be applied to a transaction. If a transaction matches multiple rules, then the most specific rule will
be used; or the first in the list.

Each surcharge rule contains the following fields:

Field Name Mandatory? Description

cardType Yes One or more 2-letter card type codes for which this rule applies (see)

The following two card type codes are also supported, in addition to
the codes listed in appendix A-9:
CC – matches any credit card.
DD – matches any debit card.

currency No Zero or more 3-letter ISO-4217 currency codes.

surcharge Yes Surcharge amount in minor (N) or major (N.N) units or a percentage
(N%).

The surcharge rules should be passed in a sequential array of records, either as nested records or
serialised records as described in section 1.5.8. The record field names are case sensitive.

11.2.2 Surcharge Amounts

The Gateway doesn't usually validate that any amount and grossAmount fields are the same
and that any netAmount, taxAmount and taxRate tally. However, in order to update them when
a surcharge is applied, the amount and grossAmount must match and the correct taxRate must
be provided or be able to be calculated from one or more of the other fields. Failure in this respect
can cause the Gateway to return one of the following responseCode values; 66360
(INVALID_GROSSAMOUNT), 66361 (INVALID_NETAMOUNT), 66338
(INVALID_TAXAMOUNT), 66362 (INVALID_TAX_RATE).

If the request contains a surchargeAmount field, then the Gateway will assume that surcharging
has already been performed externally and will not attempt to apply any further surcharges.

64

11.3 Request Fields

Field Name Mandatory? Description

surchargeRequired No1 Is surcharging required for this transaction?

Possible values are:
N – Surcharging is not required.
Y – Surcharging is required.

surchargeRules No1 Surcharge rules as documented in section 11.2.1.

surchargeAmount No Surcharge amount already added. A further
surcharge will not be added.

1 Overrides any Merchant Account setting configured via the Merchant Management System (MMS).

65

11.4 Response Fields

These fields will be returned in addition to the Surcharge request fields in section 11.3 and the
basic response fields in section 2.2.

Field Name Returned? Description

surchargeEnabled Always Is surcharging enabled on this Merchant Account?

surchargeAmount Always Surcharge amount added.

amount Always Original request value with additional surcharge.

grossAmount Conditional Original request value adjusted for new amount.

netAmount Conditional Original request value adjusted for new amount.

taxAmount Conditional Original request value adjusted for new amount.

66

12 Receipts and Notifications

12.1 Background

The Gateway can be configured to email transaction receipts automatically to the Customer and
notifications to the Merchant.

12.1.1 Customer Email Receipts

The Customer can be emailed a transaction receipt automatically each time a transaction is
processed by the Gateway. Receipts are sent at the time the transaction is authorised and only for
transactions where the Acquirer has approved the authorisation. Receipts are not sent for declined
or referred authorisations or aborted transactions.

This functionality is enabled globally on a per Merchant Account basis using the Merchant
Management System (MMS). This global setting can also be overridden per transaction if
required, using the customerReceiptsRequired field.

Customer receipts require the Customer to provide an email address; if no email address is
provided using the customerEmail field, then no receipt will be sent.

12.1.2 Merchant Email Notifications

You can be automatically emailed a transaction notification each time a transaction is processed
by the Gateway. Notifications are sent at the time the transaction is authorised and only for
transactions where the Acquirer approved, declined or referred the authorisation. Notifications are
not sent for aborted transactions.

This functionality is enabled globally on a per Merchant Account basis, using the Merchant
Management System (MMS). This global setting can also be overridden per transaction if
required, using the notifyEmailRequired field.

67

12.2 Request Fields

12.2.1 General Fields

1 Overrides any Merchant Account setting configured via the Merchant Management System (MMS).

Field Name Mandatory? Description

customerReceiptsRequired No1 Send a Customer receipt if possible.

Possible values are:
N – Don’t send a receipt.
Y – Send if Customer’s email provided.

customerEmail No Customer’s email address.

notifyEmailRequired No Send a notification email if possible.

Possible values are:
N – Don’t send a notification.
Y – Send if notification email provided.

notifyEmail No Merchant’s notification email address.

68

69

12.3 Response Fields

The request fields for the required receipts and notifications are returned together with the
appropriate fields from the following:

Field Name Returned? Description

customerReceiptsResponseCode If required Result of sending email to Customer.

customerReceiptsResponseMessage If required Description of above response code.

notifyEmailResponseCode If required Result of sending email to Merchant.

notifyEmailResponseMessage If required Description of above response code.

70

13 Recurring Transaction Agreements

13.1 Background

A Recurring Transaction Agreement (RTA) is used to request that the Gateway should perform
repeat payments on your behalf, using pre-agreed amounts and schedules.

An RTA can be configured easily and quickly, using the Merchant Management System (MMS). An
RTA can also be set up while performing the initial transaction request, by including the integration
request fields described in section 13.3. The RTA is only set up in the transaction results in a
successful payment authorisation.

The transaction should be either SALE or VERIFY transaction and the rtAgreementType field
should be provided to indicate the type of Continuous Authority/Repeat Billing agreed between
you and your Customer. This will dictate whether the subsequent repeat transactions are taken as
part of a CPA agreement or as just standard MOTO transactions.

Merchants who use this system to implement billing or subscription type payments are
encouraged to use Continuous Authority (CA) transactions to comply with Card Payment Scheme
practices. Your Acquirer may refuse to accept the recurring transactions if they are not subject to
an agreement between yourself and your Customer.

Refer to appendix A-15 for more information on the different types of repeat or recurring
transactions.

71

13.2 Scheduling

There are two different types of scheduling available when requesting the Gateway to take
recurring transactions automatically on the Merchant’s behalf. In addition, a start date can be
provided to allow for a recurring subscription with an initial free trial period.

13.2.1 Fixed Scheduling

Fixed scheduling causes the subsequent transaction to be taken at fixed intervals of time and for
fixed amounts. A different initial date and amount or final date and amount can be provided for use
when the agreed payment term or amount doesn’t exactly divide by the fixed time intervals.

Fixed scheduling is specified by providing an rtScheduleType field with a value of ‘fixed’ and
providing the rtCycleDuration, rtCycleDuration and rtCycleCount fields to define the interval at
which transactions should be taken and the number of transactions to take.

An rtCycleCount field value of 0 can be provided to indicate that transactions should be taken ad-
infinitum until the RTA is stopped.

13.2.2 Variable Scheduling

Variable scheduling causes the subsequent transaction to be taken on prespecified dates and for
prespecified amounts.

Variable scheduling is specified by providing an rtScheduleType field with a value of ‘variable’
and providing the rtSchedule field with a value containing an array of one or more schedule
records.

Each schedule record must contain the following fields:

Field Name Mandatory? Description

date Yes Date on which to take a payment.

amount Yes Amount to take on the provided date.

The schedule records should be passed in a sequential array of records, either as nested records
or serialised records as described in section 1.5.8. The record field names are case sensitive.

72

13.3 Request Fields

Field Name Mandatory? Description

rtName No Free format short name for the agreement.

rtDescription No Free format longer description for the agreement.

rtPolicyRef No Merchant Reference (MPRN).

rtAgreementType No Recurring transaction agreement type. Indicates the
type of Continuous Payment Authority or Repeat
Billing agreement made with the Cardholder.

Possible values are:
<not provided> - no CPA agreed.
recurring – recurring type CPA agreed.
instalment – instalment type CPA agreed.

rtMerchantID No Merchant ID to use for the recurring transactions
(defaults to merchantID).

rtStartDate No Start date of agreement (defaults to date received).

rtScheduleType No Schedule type.

Possible values are:
fixed – fixed interval schedule (default).
variable – variable interval schedule.

rtSchedule Yes1 Nested array or serialised string containing payment
schedule information as per section 13.2.2.

rtInitialDate No2 Date of initial payment (defaults to rtStartDate).

rtInitialAmount No2 Amount of initial payment (defaults to rtCycleAmount).

rtFinalDate No2 Date of final payment.

rtFinalAmount No2 Amount of final payment (defaults to rtCycleAmount).

rtCycleAmount No2 Amount per cycle (defaults to amount).

rtCycleDuration Yes2 Length of each cycle in rtCycleDurationUnit units.

rtCycleDurationUnit Yes2 Cycle duration unit.
One of: day, week, month or year.

rtCycleCount Yes2 Number of cycles to repeat (zero to repeat forever).

rtMerchantData No Free format Merchant data field.

1 For use with variable schedules only.
2 For use with fixed schedules only.

73

13.4 Response Fields

Field Name Returned? Description

rtID Always Recurring Transaction Agreement ID.

rtResponseCode Always Result of setting up RT Agreement.

rtResponseMessage Always Description of above response code.

74

14 Duplicate Transaction Checking

14.1 Background

Duplicate transaction checking prevents transaction requests from accidentally processing more
than once. This can happen if a Customer refreshes your checkout page or clicks a button that
issues a new transaction request repeatedly in short succession. While duplicate checking can
help prevent repeat transactions from going through, we recommend talking with your developers
to see whether changes can be made to your form to reduce the likelihood of this occurring (e.g.
disabling the Submit button after it has been clicked).

14.2 Implementation

To help prevent duplicate transactions, each transaction can specify a time window during which
previous transactions will be checked to see whether they could be possible duplicates.

This time window is specified using the duplicateDelay field. The value for this field can range

from 0 to 9999 seconds (approximately 2 ¾ hours).

If the transaction request does not include the duplicateDelay field or specifies a value of zero,

then a default delay of 300 seconds (5 minutes) is used.

The following fields are used in transaction comparison and must be the same for a transaction to
be regarded as a duplicate:

• merchantID

• action

• type

• amount

• transactionUnique

• currencyCode

• xref (if provided in lieu of card details)

• cardNumber (may be specified indirectly via cross reference)

If a transaction is regarded as being a duplicate, then a responseCode of 65554 (REQUEST

DUPLICATE) will be returned.

14.3 Request Fields

Field Name Mandatory? Description

duplicateDelay No Duplicate transaction time window in seconds.
Numeric value between 0 and 9999.

75

15 Purchase Data

15.1 Background

The Gateway can be sent advanced purchase information with each transaction, where required.

The Gateway provides several fields that you can use to store advanced purchase information
about the transaction, including details on individual items purchased. These fields are only sent to
the Acquirer if needed. The stored data can be obtained by sending a QUERY request.

The details may also be used for advanced purposes, such as displaying shopping cart
information on the MasterPass Wallet and PayPal Checkout.

15.1.1 American Express Purchases

Purchases using American Express cards will send a subset of this information to the card
scheme as appropriate.

With American Express, you can provide tax or discount reason (but not both). If taxAmount is

provided, then taxReason is used; if discountAmount is provided, then discountAmount is

used. If both are provided, then taxReason is used.

Only the first six line item details are sent to American Express and then only the
itemXXDescription, itemXXQuantity and itemXXGrossAmount fields are sent.

15.1.2 Purchase Orders

These fields together with other advanced fields, as detailed in section 16, can be used to send full
information relating to a purchase order and related invoice indicating types; quantities; and
agreed prices for products or services. Details on the supplier; shipping; delivery can also be
included.

At present, this information is not sent to the Acquirer, unless needed, but future enhancements to
the Gateway may include sending such information as Level 2 or 3 Purchasing data as defined by
the relevant card schemes.

76

15.2 Request Fields

The following request fields may be sent to provide more information on the breakdown of the
purchase amount:

Field Name Mandatory? Description

grossAmount No Total gross amount of sale.

netAmount No Total net amount of sale.

taxRate No Total tax rate (percentage).

taxAmount No1 Total tax amount of sale.

taxReason No1 Reason for above tax (e.g. VAT).

discountAmount No1 Total discount amount of sale.

discountReason No1 Reason for above discount.

handlingAmount No Handling costs.

insuranceAmount No Insurance costs.

1 Amex/Diners require either tax or discount, not both.

77

The following request fields may be sent to provide more information on the purchased items:

itemXXAmount1 No Amount for XXth item purchased.

itemXXDescription1 No Description of XXth item purchased.

itemXXQuantity1 No Quantity of XXth item purchased.

itemXXGrossAmount1 No Gross amount for XXth item purchased.

itemXXNetAmount1 No Net amount for XXth item purchased.

itemXXTaxAmount1 No Tax amount for XXth item purchased.

itemXXTaxRate1 No Total tax rate for XXth item purchased.

itemXXTaxReason1 No Tax reason for XXth item purchased.

itemXXDiscountAmount1 No Total discount for XXth item purchased.

itemXXDiscountReason1 No Discount reason for XXth item purchased.

itemXXProductCode1 No Product code for XXth item purchased.

itemXXProductURL1 No Shopping cart URL for XXth item purchased.

itemXXCommodityCode1 No Commodity code for XXth item purchased.

itemXXUnitOfMeasure1 No Unit of measure for XXth item purchased.

itemXXUnitAmount1 No Unit amount for XXth item purchased.

itemXXImageUrl1 No Image of XXth item purchased.

itemXXSize1 No Size of XXth item purchased in the format
‘LengthxWidthxHeight Unit’.

itemXXWeight1 No Weight of XXth item purchased in the format ‘Weight
Unit’.

Items No Nested line item records (see below).

1 XX is a number between 1 and 99.

The purchased items can be passed as either individual itemXXField fields; or as a single items
field whose value is a sequential array of nested records as described in section 1.5.8.

Both formats cannot be used together. The presence of an items field will cause the Gateway to
ignore any individual fields.

The Gateway does not currently support items to be given as a serialised array of records.

78

Note: no attempt is made to check that any gross, net and tax amounts are correct with respect to
each other. It is the sender’s responsibility to ensure alternative amount formats are correct.

Line item fields can either be sent ‘flat’ using field names containing the item row number as a
sequential number from 1 to 99; or be sent using nested arrays of the form items[XX][field]

where XX is the row number from 1 to 99 and field is the field name from the above table

without the itemXX prefix and starting with a lowercase first letter. For example, the tax rate for

item 5 can be sent either as item5TaxRate; or as items[5][taxRate]. The two formats

should not be mixed. If a request field of items is seen, then the ‘flat’ fields are ignored.

79

16 Custom Data

You may send arbitrary data with the request by appending extra fields, which will be returned
unmodified in the response. These extra fields are merely ‘echoed’ back and not stored by the
Gateway.

Caution should be made to ensure that any extra fields do not match any currently documented
fields or possible future fields. One way to do this is to prefix the field names with a value unique to
you, the Merchant.

You can also use the merchantData field to store custom data with the transaction. This stored

data can then be retrieved at a later date, using a QUERY request. Associative data can be
serialised using the notation merchantData[name]=value; or, alternatively, a JSON or XML

encoded string could be stored.

16.6 Request Fields

Field Name Mandatory? Description

merchantData No Arbitrary data to be stored together with this
transaction.

80

17 Advanced Data

The Gateway provides a number of fields that you can use to store information about the
transaction. These fields are only sent to the Acquirer if needed. The stored data can be obtained
by sending a QUERY request.

17.1 Customer Request Fields

These fields can be used to store details about the Customer and any relationship between the
Customer and Merchant such as any purchase order raised.

If AVS checks are in use, then the Customer and Cardholder are assumed to be the same person
and the address and postcode fields are taken as being the registered billing address of the card.

Field Name Mandatory? Description

customerName No Cardholder’s name.

customerCompany No Cardholder’s company (if applicable).

customerAddress No1 Cardholder’s address.

customerPostcode No1 Cardholder’s postcode.

customerTown No Cardholder’s town/city.

customerCounty No Cardholder’s county/province.

customerCountryCode No Cardholder’s country.

customerPhone No Cardholder’s phone number.

customerMobile No Cardholder’s mobile phone number.

customerFax No Cardholder’s fax number.

customerEmail No Cardholder’s email address.

customerOrderRef No Customer’s reference for this order
(Purchase Order Reference).

customerMerchantRef No Customer’s reference for the Merchant.

customerTaxRef No Customer’s tax reference number.

1 Mandatory if AVS checking required.

81

17.2 Merchant Request Fields

These fields can be used to store details about the Merchant and any relationship between the
Merchant and Customer such as any invoice reference.

Field Name Mandatory? Description/Value

merchantName No Merchant’s contact name.

merchantCompany No Merchant’s company name.

merchantAddress No Merchant’s contact address.

merchantTown No Merchant’s contact town/city.

merchantCounty No Merchant’s contact county.

merchantPostcode No Merchant’s contact postcode.

merchantCountryCode No Merchant’s contact country.

merchantPhone No Merchant’s phone.

merchantMobile No Merchant’s mobile phone number.

merchantFax No Merchant’s fax number.

merchantEmail No Merchant’s email address.

merchantWebsite No Merchant’s website. The website must be a fully
qualified URL and include at least the scheme and
host components.

merchantOrderRef No Merchant’s reference for this order
(Invoice/Sales Reference).

merchantCustomerRef No Merchant’s reference for the Customer.

merchantTaxRef No Merchant’s tax reference number.

merchantOriginalOrderRef No Reference to a back order.

merchantCategoryCode No Scheme assigned Merchant Category Code (MCC).

82

17.3 Supplier Request Fields

These fields can be used to store details about the Supplier address. This is where any purchased
goods are being supplied from if different from the Merchant‘s address.

Field Name Mandatory? Description/Value

supplierName No Supplier’s contact name.

supplierCompany No Supplier’s company name.

supplierAddress No Supplier’s contact address.

supplierTown No Supplier’s contact town/city.

supplierCounty No Supplier’s contact county.

supplierPostcode No Supplier’s contact postcode.

supplierCountryCode No Supplier’s contact country.

supplierPhone No Supplier’s phone.

supplierMobile No Supplier’s mobile phone number.

supplierFax No Supplier’s fax number.

supplierEmail No Supplier’s email address.

83

17.4 Delivery Request Fields

These fields can be used to store details about the delivery address. This is where any purchased
goods are being delivered to if different from the Customer’s address.

Field Name Mandatory? Description/Value

deliveryName No Name of person receiving the delivery.

deliveryCompany No Name of company receiving the delivery.

deliveryAddress No Delivery address.

deliveryTown No Delivery town/city.

deliveryCounty No Delivery county.

deliveryPostcode No Delivery postcode.

deliveryCountryCode No Delivery country.

deliveryPhone No Phone number of delivery location.

deliveryMobile No Mobile phone number of delivery location.

deliveryFax No Fax number of delivery location.

deliveryEmail No Delivery email address.

84

17.5 Receiver Request Fields

These fields can be used to store details about the recipient of the purchased goods where
different from the Customer’s and Delivery details. It is most commonly used by Financial
Institutions (MCC 6012 Merchants) who need to record the primary recipient of a loan.

Field Name Mandatory? Description/Value

receiverName No Receiver’s contact name.

receiverCompany No Receiver’s company name.

receiverAddress No Receiver’s contact address.

receiverTown No Receiver’s contact town/city.

receiverCounty No Receiver’s contact county.

receiverPostcode No Receiver’s contact postcode.

receiverCountryCode No Receiver’s contact country.

receiverPhone No Receiver’s phone.

receiverMobile No Receiver’s mobile phone number.

receiverFax No Receiver’s fax number.

receiverEmail No Receiver’s email address.

receiverAccountNo No Receiver’s account number.

receiverDateOfBirth No Receiver’s date of birth.

85

17.6 Shipping Request Fields

These fields can be used to store details about the shipping method and costs.

Field Name Mandatory? Description/Value

shippingTrackingRef No Shipping tracking reference.

shippingMethod No Shipping method (e.g. Courier, Post, etc.).

shippingAmount No Cost of shipping.

shippingGrossAmount No Gross cost of shipping.

shippingNetAmount No Net cost of shipping.

shippingTaxRate No Tax rate as percentage to 2 decimal places.

shippingTaxAmount No Tax cost of shipping.

shippingTaxReason No Tax reason (e.g. VAT).

shippingDiscountAmount No Discount on shipping.

shippingDiscountReason No Reason for discount.

Note: No attempt is made to check that any gross, net and tax amounts are correct with respect to
each other. It is the sender’s responsibility to ensure alternative amount formats are correct.

86

87

18 Gateway Wallet

18.1 Background

The Gateway supports an internal digital Wallet that is available to all Merchants using the
Gateway.

The Gateway allows you to store your Customer’s payment card, billing and delivery address
details and other information securely encrypted in its internal Wallet. You can then allow your
Customer to select from stored payment cards to check out faster on your website.

Management of this Wallet is done using the Gateway’s REST API. However, you can use the
Hosted, Direct or Batch Integrations to perform transactions, using cards and addresses stored in
the Wallet; or to store new cards and address used with successful transactions.

88

18.2 Benefits and Limitations

18.2.1 Benefits

• Details can be used from or added to the Wallet with just a few extra integration fields.

• Customers can select from previously stored details, making the checkout process more
streamlined, resulting in fewer abandoned carts and thus increasing sales.

• Compatible with existing card base fraud solutions such as Address Verification Service
(AVS), 3-D Secure and third-party fraud providers.

• There are no extra costs to use the internal Gateway Wallet.

• The Wallet transactions are controlled within the Merchant Management System (MMS) in
the same manner as normal card transactions.

18.2.2 Limitations

• The payment details are stored internally by the Gateway and not available for use with
other Gateway Merchants or other payment gateways.

89

18.3 Hosted Implementation

Customers who have payment details already saved will have the option to select from those
details rather than having to renter them. Customers will also have the option to delete stored
details1

The details are only saved if the transaction is successful, ensuring that the Wallet is not filled up
with invalid payment details.

The details requiring to be stored in the Wallet are validated when the transaction is performed,
prior to any authorisation with the Acquirer. If any of the details are invalid, then the transaction will
be aborted with a responseCode of 66304 (INVALID_REQUEST) and a responseMessage
indicating which data could not be stored in the Wallet. Any failure that occurs post authorisation
will not abort the transaction but will be available in the appropriate xxxxStoreResponseCode
response fields.

The walletOwnerRef field can be used to assign a unique Customer reference to the Wallet,

allowing you to identify which of your Customers owns the Wallet. This could be the Customer
reference you use within your own Customer accounts or Shopping Cart software. You must
ensure that this value is less than 50 characters, or the transaction will be aborted with a
responseCode of 65xxx (INVALID_WALLETCUSTOMERREF).

90

18.4 Direct Implementation

If a transaction is sent to the Direct Integration, then with the addition of a few extra integration
fields, it can be instructed to use payment details stored in the Wallet and/or store the used
payment details.

Using stored payment details is similar to performing cross-referenced transactions where the
payment details are cloned from a previous transaction1. However, in this case the payment
details are taken from the Wallet and not a previous transaction.

The details are only saved if the transaction is successful, ensuring that the Wallet is not filled up
with invalid payment details.

The details requiring to be stored in the Wallet are validated when the transaction is performed
prior to any authorisation with the Acquirer. If any of the details are invalid, then the transaction will
be aborted with a responseCode of 66304 (INVALID_REQUEST) and a responseMessage
indicating which data could not be stored in the Wallet. Any failure that occurs post authorisation
will not abort the transaction but will be available in the appropriate xxxxStoreResponseCode
response fields.

The walletOwnerRef field can be used to assign a unique Customer reference to the Wallet

allowing you to identify which of your Customers owns the Wallet. This could be the Customer
reference you use within your own Customer accounts or Shopping Cart software. You must
ensure that this value is less than 50 characters, or the transaction will be aborted with a
responseCode of 65xxx (INVALID_WALLETCUSTOMERREF).

91

18.5 Request Fields

Field Name Mandatory? Description

walletID No Identifier for an existing Wallet to use.

walletName No Name for any new Wallet created.

walletDescription No Description for any new Wallet created.

walletOwnerRef No Owner Reference for any new Wallet created.

walletData No Merchant Data for any new Wallet created.

walletStore No Request that all payment details be stored in the
Wallet. A new Wallet will be created if needed.

Possible values are:
Y- store all payment details.
N- store details according to their xxxStore value.

cardID No Identifier for an existing card stored in a Wallet.

cardName No Name for any new card stored.

cardDescription No Description for any new card stored.

cardData No Merchant Data for any new card stored.

cardStore No Request that the payment card details be stored in
the Wallet. A new Wallet will be created if needed.

Possible values are:
Y- store the card details.
N- do not store the card details.

customerAddressID No Identifier for an existing address stored in a Wallet.

customerAddressName No Name for any new address stored.

customerAddressDescription No Description for any new address stored.

customerAddressData No Merchant Data for any new address stored.

customerAddressStore No Request that the customer address details be stored
in the Wallet. A new Wallet will be created if needed.

Possible values are:
Y- store the customer address details.
N- do not store the customer address details.

deliveryAddressID No Identifier for an existing address stored in a Wallet.

deliveryAddressName No Name for any new address stored.

deliveryAddressDescription No Description for any new address stored.

92

deliveryAddressData No Merchant Data for any new address stored.

deliveryAddressStore No Request that the delivery address details be stored in
the Wallet. A new Wallet will be created if needed.

Possible values are:
Y- store the delivery address details.
N- do not store the delivery address details.

93

18.6 Response Fields

These fields will be returned in addition to the request fields from section.

Field Name Mandatory? Description

walletStoreResponseCode No Result of creating or updating the Wallet details.
Refer to appendix A-1 for details.

walletStoreResponseMessage No Description of above response code.

cardStoreResponseCode No Result of creating or updating the card details.
Refer to appendix A-1 for details.

cardStoreResponseMessage No Description of above response code.

customerAddresStoreResponseCode No Result of creating or updating the address details.
Refer to appendix A-1 for details.

customerAddressStoreResponseMessage No Description of above response code.

deliveryAddressStoreResponseCode No Result of creating or updating the address details.
Refer to appendix A-1 for details.

deliveryAddressStoreResponseMessage No Description of above response code.

If new items are stored in the Wallet, then their identifiers will be returned in the appropriate
walletID, cardID, customerAddressID and deliveryAddressID together with any values
provided for or assigned by default to the other item fields.

Failure to store any of the details in the Wallet will be reported using the appropriate
xxxxStoreResponseCode response field.

94

19 Masterpass Wallet

19.1 Background

Masterpass is a digital wallet from Mastercard that is available to all Merchants using the
Gateway.

It allows customers to store their payment and shipping information in one central, secure location.
With Masterpass, customers can shop, click, and check out faster on your website.

Masterpass transactions process and settle just like credit card transactions. You can identify
Masterpass transactions in the Merchant Management System by their unique payment type logo,
which includes the credit card brand name at the bottom.

There are no additional fees for processing Masterpass transactions – pricing for Masterpass is
the same as your other credit card transactions.

Masterpass versions 6 and 7 are supported by the Gateway.

Masterpass is supported by the Hosted and Direct Integrations. It is not supported by the
Batch Integration.

Masterpass has upgraded to Mastercard’s new guest checkout option and Customers can no longer
sign up. As such this integration is subject to change.

Masterpass is an advanced feature and must be enabled on your Merchant Account before it can be
used. Please contact support if you wish to have it enabled.

95

19.2 Benefits and Limitations

19.2.1 Benefits

• The Wallet details are stored externally to the Gateway and available with any third-party
Checkout that supports Masterpass.

• Customers can select from previously stored details, making the checkout process more
streamlined, resulting in fewer abandoned carts and thus increasing sales.

• Compatible with existing card base fraud solutions such as Address Verification Service
(AVS), 3-D Secure and third-party fraud providers.

• There are no extra costs to add Masterpass to your Gateway account.

• The Masterpass transactions are controlled within the Merchant Management System
(MMS) in the same manner as normal card transactions.

19.2.2 Limitations

• Your Customer will need a Masterpass Wallet with some stored card details in order to
make full use of this payment method.

• Repeat transactions using the retrieved payment details are supported but may require
permission from Masterpass.

96

19.3 Hosted Implementation

If a transaction is sent to the Hosted Integration using a merchantID that has Masterpass
enabled, then the Hosted Payment Page will display a MasterPass payment button that, when
clicked, will open the Masterpass Wallet and allow the Customer to select their payment card and
address details.

To customise the Masterpass Wallet experience, you may send various options in the
masterPassCheckoutOptions field in your initial request.

Additional information available from the Masterpass Wallet will be made available in the
masterPassCheckoutDetails response field.

Note: Custom Hosted Payment Pages might not support the displaying of the Masterpass button.
If you have a custom page that doesn’t support this, then please contact support to have your
Hosted Payment Page upgraded.

97

19.4 Direct Implementation

Masterpass transactions require you to display the Masterpass Wallet to your Customer as part of
the transaction flow. The transaction must be done in two stages, with the Wallet being displayed
between the stages. They can optionally also be done in three stages, allowing you to display an
order confirmation after the Wallet and before authorising the transaction. You can change the
amount at this stage to allow for shipping costs when you know the confirmed delivery address the
Customer selected from the Wallet.

19.4.1 Initial Request (Checkout Preparation)

To request that a transaction be processed using details selected from the Customer’s Masterpass
Wallet, the request must contain a paymentMethod of ‘masterpass’ and a
masterPassCallbackURL containing the URL of a page on your server to return to when the
Wallet is closed. In addition, you may send masterPassCheckoutOptions to customise the
Wallet experience. When the Gateway receives these two fields, assuming there are no other
errors with the request, it will attempt to find a suitable Masterpass enabled Merchant Account in
the current account mapping group (refer to appendix A-6).

If the Gateway is unable to find a suitable account, then the transaction will be aborted and it will
respond with a responseCode of 65569 (MASTERPASS_NOT_SUPPORTED).

Otherwise the Gateway will respond with a responseCode of 65572

(MASTERPASS_CHECKOUT REQUIRED) and the response will include a
masterPassCheckoutURL field containing the URL required to load the Masterpass Wallet and a
masterPassCheckoutOptions containing any data required to be sent to the Wallet. The
response will also contain a unique masterPassData field that must be echoed back in the
continuation requests. No transaction will have been created by the Gateway at this stage and this
request will not appear in the Merchant Management System.

At this point your server must redirect the Customer’s browser to the Masterpass Wallet at the
provided masterPassCheckoutURL. Alternatively, the masterPassCheckoutURL can be used in
conjunction with the Masterpass JavaScript code to implement a lightbox style Wallet that allows
the Merchants website to remain visible in the background. Further details on how to use the
Masterpass JavaScript SDK can be obtained from Masterpass.

19.4.2 Continuation Request (Checkout Details and Authorise)

On completion of the Masterpass Wallet, it will redirect the Customer’s browser to the
masterPassCallbackURL provided, including an OAuth token, OAuth verifier and status URL
parameters. If the checkout was successful, the status will be ‘success’. Alternatively, if the
checkout was cancelled the status will be ‘cancel’.

These URL parameters should be sent to the Gateway in the masterPassToken,
masterPassVerifier and masterPassStatus fields of a new request. The new request must
contain the masterPassData received in the initial response. This new request will retrieve the
Customer’s chosen payment and delivery details from Masterpass and then send the transaction
to the Acquirer for authorisation, returning the result similarly to a normal card-based authorisation
transaction.

98

If the continuation request contains any details that would normally be read from the Masterpass
Wallet, then these will take precedence and overwrite the Wallet details. Note: in such cases, the
transaction will no longer class as being a Masterpass transaction and will be treated by the
Acquirers as if the Wallet was not used.

If the chosen details cannot be retrieved or if the masterPassStatus field indicated that the Wallet
was cancelled, then the Gateway will return a responseCode of 65570

(MASTERPASS_CHECKOUT_FAILURE).

19.4.3 Separate Checkout Details and Authorisation Requests

You can choose to obtain the Wallet details before sending the transaction for authorisation by
sending the masterPassOnly field in the above continuation request. If this field is sent with a
value of ‘Y’, then the Gateway will load the Wallet details and then return them to you without
sending the request for authorisation. You can then display them and/or adjust the amount, for
example, according to delivery charges appropriate to the received delivery address. You should
then send a new request, containing the masterPassData received, to continue the transaction
and authorise it.

If the continuation request contains any details that would normally be read from the Masterpass
Wallet, then these will be ignored and the Wallet details returned. Note: this is different from usual
processing, where incoming fields usually take precedence.

The outcome of this request will depend on the value of the masterPassStatus field and the
ability to communicate with Masterpass. On success, the Gateway will return a responseCode of

65571 (MASTERPASS_CHECKOUT_SUCCESS) and response will include the chosen payment
card and address details. If the Wallet was cancelled or if the chosen details cannot be retrieved,
then the Gateway will return a responseCode of 65570

(MASTERPASS_CHECKOUT_FAILURE).

Note: this stage can be repeated multiple times by including the masterPassOnly field with a
value of ‘Y’ each time. To complete the transaction, the final request must not contain the
masterPassOnly field or it must not have a value of ‘Y’.

99

19.5 Request Fields

19.5.1 Initial Request (Hosted and Direct Integrations)

These fields should be sent in addition to basic request fields in section 2.1 excluding any card
details.

Field Name Mandatory? Description

paymentMethod Yes1 Must contain the value ‘masterpass’ in lower case
letters only.

masterPassCallbackURL Yes2 URL on Merchant’s server to return to when the
Masterpass Wallet is closed.

masterPassCheckoutOptions No Record containing options used to customise the
Masterpass Wallet. Refer to section 20.5.3 for
values.

masterPassCheckoutID No Merchant’s unique checkout identifier as provided by
Masterpass.

1 Optional for Hosted Integration.
2 Not required for Hosted Integration.

19.5.2 Continuation Request (Direct Integration)

Field Name Mandatory? Description

masterPassData Yes

Unique reference returned in the initial response.

masterPassStatus Yes1 The Wallet status returned to the Merchant.

masterPassToken Yes1 The OAuth token returned to the Merchant.

masterPassVerifier Yes1 The OAuth verifier returned to the Merchant.

masterPassOnly No Pass Y to complete the processing as far as the next
Wallet stage and then return with the loaded Wallet
details.

1 The masterPassStatus, masterPassToken and MasterPassVerifier should be initialised with values received

by your website when the wallet redirects to your masterPassCallbackURL URL. If the checkout was cancelled, then

only the masterPassStatus field need be sent to the Gateway.

100

19.5.3 Wallet Options (Hosted and Direct Integrations)

The following options may be set in the masterPassCheckoutOptions field to customise the
Masterpass Wallet.

Field Name Description

version Masterpass version required.

Possible values are:
v6 – use version 6 of the Masterpass API (default).
v7 – use version 7 of the Masterpass API (preferred).

requireLightboxCheckout Use the lightbox version of the Masterpass Wallet rather than the full
screen checkout when possible.

Possible values are:
false – use the full screen Wallet.
true – use the lightbox Wallet if possible.

suppress3Ds Suppress Masterpass 3-D Secure processing. This allows the Gateway to
do the 3-D Secure processing using the chosen card details.

Possible values are:
false – allow the Wallet to handle 3-D Secure.
true – allow the Gateway to handle 3-D Secure.

requestBasicCheckout Deprecated name for suppress3Ds.

suppressShippingAddress Suppress the requirement for the Customer to select a shipping address
as well as payment card details.

Possible values are:
false – shipping address must be selected.
true – shipping address need not be selected.

requestShippingAddressEnable Deprecated name for suppressShippingAddress.

shippingLocationProfile Provide a Masterpass shipping profile. Refer to the Masterpass document
for details.

rewardsProgram Enable the Masterpass loyalty program. Refer to the Masterpass
document for details.

loyaltyEnabled Deprecated name for rewardsProgram.

suppressWalletSelector

Suppress the ability to select alternative Wallet providers from within the
Masterpass Wallet.

Possible values are:
false – allow alternative Wallets to be selected.
true – don’t allow alternative Wallets to be selected.

walletSelectorBypassEnable Deprecated name for suppressWalletSelector

merchantCheckoutId Merchant’s unique checkout identifier as provided by Masterpass. Either
as passed in the initial request or as configured on the Gateway for your
account.

101

Field Name Description

allowedCardTypes List of Masterpass card types to allow selection from within the Wallet.
Will be returned in the response from the card types configured for your
Merchant Account.

The options should be passed as either a nested record or serialised record as described in
section 1.5.8. The option names are case sensitive.

The deprecated options were originally used with v6 of the Masterpass API and the Gateway will
accept both the newer v7 option name and the original v6 option name regardless of the value of
any version option provided. The Gateway may return the correct name for the version when it
returns the masterPassCheckoutOptions in the initial response.

The nature of the URL returned in the masterPassCheckoutURL response field depends on
whether the Masterpass lightbox or full-page redirect checkout is required as specified using the
requireLightboxCheckout option. If the option is passed as 'true', then the URL will reference the
Masterpass JavaScript file that should be loaded to provide the code required to open the lightbox
style Wallet. The masterPassCheckoutOptions response values should then be passed to the
JavaScript call to open the lightbox. If the option is not passed or not 'true', then the URL will be an
address to redirect the Customer’s browser to in order to display the MasterPass Checkout pages.
This URL will have its query component initialised from any masterPassCheckoutOptions
request values, and any response values need not be used.

If the suppress3Ds or requestBasicCheckout option is not passed, then it will be defaulted to
‘true’, so that the Gateway’s 3-D Secure processing will be used as opposed to the Wallet’s 3-D
Secure processing. This ensures your 3-D Secure preferences are followed.

If the suppressShippingAddress or suppressShippingAddressEnable option is passed as 'true'
then no attempt will be made to return the delivery address fields. Any delivery address fields
passed in the transaction will be echoed back unaltered.

Any merchantCheckoutId or allowedCardTypes options will be overwritten and therefore should
not be passed in the request but will be available in the response.

102

19.5.4 Purchase details (Hosted and Direct Integrations)

The following request fields may be sent to provide information on the purchased items and to
populate the cart on the Masterpass Wallet (v6 only).

Field Name Mandatory? Description

itemXXDescription No Description of XXth item purchased.

itemXXQuantity No Quantity of XXth item purchased.

itemXXGrossAmount No Gross amount for XXth item purchased.

itemXXTaxAmount No Tax amount for XXth item purchased.

itemXXProductCode No Product code for XXth item purchased.

itemXXImageUrl No Shopping cart URL for XXth item purchased.

itemXXSize No Size of XXth item purchased in the format
‘LengthxWidthxHeight Unit’.

itemXXWeight No Weight of XXth item purchased in the format ‘Weight
Unit’.

items No Nested array of line items.

Refer to section 15.2 for more information on these fields.

103

19.6 Response Fields

19.6.1 Initial Response (Direct Integration)

These fields will be returned in addition to the request fields from section 19.5.1 and the basic
response fields in section 2.2 minus any card details.

Field Name Mandatory? Description

masterPassData Yes

Unique reference required to continue this
transaction when the Masterpass Wallet has
completed.

masterPassCheckoutURL Yes URL required to load the Masterpass Checkout

masterPassCheckoutOptions No Any checkout options passed in the request.

104

19.6.2 Continuation Response (Direct Integration)

These fields will be returned in addition to the request fields from section 19.5.2; the initial
response fields in section 19.6.1; and the basic response fields in section 2.2 minus any card
details.

Field Name Mandatory? Description

masterPassData No

Provided, if masterPassOnly was used in the

continuation response to indicate that a further
request will be sent to finalise the transaction.

masterPassWalletID Yes Masterpass Wallet ID.

masterPassCheckout Yes Masterpass Wallet details in original retrieved XML
format minus any card numbers.

cardXXXX Yes Card details chosen in the Masterpass Wallet as
documented in section 2.2.

customerXXXX No1 Customer details if provided by the Masterpass
Wallet as documented in section 17.1

deliveryXXXX No1 Delivery details if provided by the Masterpass Wallet
as documented in section 17.4

1 The response will include Customer/billing address and delivery address details if provided by the Masterpass Wallet.

105

20 PayPal Transactions

20.1 Background

PayPal is an additional payment method that is available to all Merchants using the Gateway who
have a PayPal account.

To use PayPal, you will be supplied with a separate PayPal Merchant Account that can be
grouped with your main Merchant Account using the account mapping facility as documented in
appendix A-6. This allows transactions to be sent using your main Merchant Account and then
routed automatically to the PayPal Merchant Account in the same mapping group.

It allows you to offer payment via PayPal in addition to normal card payments.

PayPal transactions will appear in the Merchant Management System (MMS) alongside any card
payments and can be captured, cancelled and refunded in the same way as card payments.

PayPal transactions can also be used for recurring billing but require you to indicate in the initial
transaction that it will be the basis for recurring billing and that a billing agreement will be entered
into between your Customer and PayPal when they agree to the payment.

PayPal transactions cannot be used for ad-hoc ‘Card On File’ repeat transactions unless a billing
agreement has been set up.

For more information on how to accept PayPal transactions, please contact customer support.

PayPal is supported by the Hosted and Direct Integrations. It is not supported by the Batch
Integration.

106

20.2 Benefits and Limitations

20.2.1 Benefits

• Provides your customers with the flexibility of paying by using their PayPal account when
this is more suitable to them than using a traditional credit or debit card.

• The in-context PayPal Express Checkout helps improve conversion rates with an easier
way to pay without customers leaving your website.

• There are no extra costs for adding a PayPal Merchant Account. However, you will still be
liable for the PayPal transaction fees.

• The full PayPal transaction information is available and returned as part of the transaction.

• Transactions are controlled within the Merchant Management System (MMS) in the same
manner as normal card transactions.

20.2.2 Limitations

• You will need a PayPal account.

• Recurring transactions are not supported unless as part of a prearranged billing agreement.

• Independent refunds that are not tied to a previous sale transaction are not supported
without prior agreement.

• Transactions require a browser in order to display the PayPal Checkout.

• The PayPal Checkout cannot be opened from within a browser IFRAME and so care must
be taken to ensure that any PayPal Checkout button is not placed within such an IFRAME.

107

20.3 Hosted Implementation

If a transaction is sent to the Hosted Integration using a merchantID that is part of a routing group
containing a PayPal Merchant, then the Hosted Payment Page will display a PayPal payment
button that, when clicked, will open the PayPal Checkout and allow the Customer to pay using
their PayPal account.

To customise the PayPal Checkout experience, you may send various options in the
payPalCheckoutOptions field in your initial request.

Additional information available from the PayPal Checkout will be made available in the
checkoutDetails response field.

Note: Custom Hosted Payment Pages might not support the displaying of the PayPal Checkout
button. If you have a custom page that doesn’t support this, then you would need to contact
support to have your Hosted Payment Page upgraded.

108

20.4 Direct Implementation

PayPal transactions require you to display the PayPal Checkout to your Customer as part of the
transaction flow. The transaction must be done in two stages, with the Checkout being displayed
between the stages. They can also be optionally done in three stages allowing you to display an
order confirmation after the Checkout and before authorising the transaction. You can change the
amount at this stage to allow for shipping costs when you know the confirmed delivery address the
Customer selected as part of the PayPal Checkout.

PayPal supports the normal payment and management actions. This section explains how to
make payment requests. Management requests are performed as detailed in section 3.

20.4.1 Initial Request (Checkout Preparation)

To request that a transaction be processed via PayPal the request must contain a
paymentMethod of ‘paypal’ and a checkoutRedirectURL containing the URL of a page on your
server to return to when the Checkout is closed. In addition, you may send checkoutOptions to
customise the Checkout experience. When the Gateway receives this paymentMethod, assuming
there are no other errors with the request, it will attempt to find a suitable PayPal Merchant
Account in the current account mapping group.

If the Gateway is unable to find a suitable account, then the transaction will be aborted and it will
respond with a responseCode of 66364 (INVALID PAYMENTMETHOD).

Otherwise the Gateway will respond with a responseCode of 65826 (CHECKOUT REQUIRED)

and included in the response will be a checkoutURL field containing the URL required to load
Checkout and a checkoutRequest containing any data required to be sent to the Checkout. The
response will also contain a unique checkoutRef which must be echoed back in the continuation
requests.

At this point your server must redirect the Customer’s browser to the provided checkoutURL.
Alternatively, the checkoutURL can be used in conjunction with the PayPal In-Context JavaScript
code to implement an In-context Checkout which allows the Merchants website to remain visible in
the background. Further details on how to use the In-Context Checkout are provided in the
PayPal guide at https://developer.paypal.com/docs/classic/express-checkout/in-
context/enable_in_context_checkout/.

20.4.2 Continuation Request (Checkout Details and Authorise)

On completion of the PayPal Checkout it will redirect the Customer’s browser to the
checkoutRedirectURL provided including a token and status URL parameters. If the checkout
was successful, the status will be ‘success’ alternatively if the Checkout was cancelled the status
will be ‘cancel’. The received redirect request parameters inclusive of these token and status
parameters should then be sent to the Gateway in the checkoutResponse fields of a new
request. The checkoutResponse field can be sent either as the original URL query string
received or as an array of the decoded query parameters. This new request will load the Checkout
details including any delivery address if required and send the transaction to PayPal for

https://developer.paypal.com/docs/classic/express-checkout/in-context/enable_in_context_checkout/
https://developer.paypal.com/docs/classic/express-checkout/in-context/enable_in_context_checkout/

109

authorisation, returning the result as per a normal authorisation transaction. The new request must
contain the checkoutRef received in the initial response.

20.4.3 Separate Checkout Details and Authorisation Requests

You can choose to obtain the Checkout details before actually sending the transaction for
authorisation by sending the checkoutOnly field in the above continuation request. If this field is
sent with a value of ‘Y’ then the Gateway will load the Checkout details and then return them to
you without sending the request for authorisation. You can then display them and/or adjust the
amount, for example, according to delivery charges appropriate to the received delivery address.
You should then send a new request containing the checkoutRef received to continue the
transaction and authorise it.

Note: this stage can be repeated multiple times by including the checkoutOnly field with a value
of ‘Y’ each time. To complete the transaction, the final request must not contain the checkoutOnly
field or it must not have a value of ‘Y’.

110

20.5 Request Fields

20.5.1 Initial Request (Hosted and Direct Integrations)

These fields should be sent in addition to basic request fields in section 2.1 excluding any card
details.

Field Name Mandatory? Description

paymentMethod Yes1 Must contain the value ‘paypal’ in lower case letters
only.

checkoutRedirectURL Yes2 URL on Merchant’s server to return to when the
PayPal Checkout is closed.

checkoutOptions No3 Record containing options used to customise the
PayPal Checkout. Refer to section 20.5.3 for values.

payPalCheckoutOptions No4 Record containing options used to customise the
PayPal Checkout. Refer to section 20.5.3 for values.

1 Optional for Hosted Integration.
2 Not required for Hosted Integration.
3 Direct Integration Only
4 Hosted Integration Only

20.5.2 Continuation Request (Direct Integration)

These fields may be sent alone1.

Field Name Mandatory? Description

checkoutRef Yes

Unique reference return in the initial response.

checkoutResponse Yes The GET and or POST data received by the
checkoutRedirectURL page.

checkoutOnly No Pass Y to complete the processing as far as the next
Checkout stage and then return with the loaded
Checkout details.

1 It is only necessary to send the checkoutRef and the checkoutResponse in the continuation request because the

checkoutRef will identify the Merchant Account and initial request. The message does not need to be signed. You can

send any of the normal request fields to modify or supplement the initial request – however, in this case the request
should be signed. The checkoutRedirectURL and checkoutOptions fields sent in the initial request cannot be

modified and any sent in the second request must match those used in the first request, or the second request will fail with
a responseCode of 64442 (REQUEST MISMATCH).

111

20.5.3 Checkout Options (Hosted and Direct Integrations)

The following options may be set in the payPalCheckoutOptions Hosted Integration field or the
checkoutOptions Direct Integration field to customise the PayPal Checkout.

Field Name Description

inContext Use the in-context PayPal Checkout rather than the full screen Checkout
when possible.

Possible values are:
0 – use the full screen Checkout.
1 – use the in-context Checkout if possible.

userAction Determines whether buyers complete their purchases on PayPal or on
your website.

Possible values are:
commit – sets the submit button text to ‘Pay Now’ on the PayPal
Checkout. This text lets buyers know that they complete their purchases if
they click the button.
continue– sets the submit button text to ‘Continue’ on the PayPal
Checkout. This text lets buyers know that they will return to the
Merchant’s cart to complete their purchases if they click the button.

maxAmount1 The expected maximum total amount of the order, including shipping and
taxes.

reqBillingAddress Determines whether the buyer’s billing address on file with PayPal is
returned. This feature must be enabled by PalPal.

reqConfirmShipping Determines whether the buyer’s shipping address on file with PayPal
must be a confirmed address.

Possible values are:
0 – does not need to be confirmed
1 – must be confirmed

noShipping Determines whether PayPal displays shipping address.

Possible values are:
0 – display the shipping address
1 – do not display shipping address and remove shipping information
2 – If no deliveryXXXX fields passed, PayPal obtains them from the

buyer's account profile.

addrOverride Determines whether the PayPal Checkout displays the shipping address
sent using the deliveryXXXX fields and not the shipping address on file

with PayPal for this buyer. Displaying the PayPal street address on file
does not allow the buyer to edit that address.

Possible values are:
0 – PayPal should not display the address.
1 – PayPal should display the address.

1 PayPal refer to this field as MAXAMT.

112

Field Name Description

localeCode Locale of the pages displayed by PayPal during Express Checkout. It is
either a two-letter country code or five-character locale code supported by
PayPal.

allowNote Enables the buyer to enter a note to the merchant on the PayPal page
during Checkout. The note is returned in the checkoutDetails

response field.

pageStyle Name of the Custom Payment Page Style used for the PayPal Checkout.
It is the same name as the Page Style Name used when adding styles in
the PayPal Account.

payflowColor The HTML hex colour code for the PayPal Checkout’s background colour.
By default, the colour is white (FFFFFF).

cardBorderColor The HTML hex colour code for the PayPal Checkout’s principal identifying
colour. The colour will be blended to white in a gradient fill that borders
the cart review area.

hdrImg URL for the image you want to appear at the top left of the payment page.
The image has a maximum size of 750 pixels wide by 90 pixels high.
PayPal requires that you provide an image that is stored on a secure
(https) server. If you do not specify an image, the business name
displays.

logoImg A URL to your logo image. Use a valid graphics format, such as .gif, .jpg,
or .png. Limit the image to 190 pixels wide by 60 pixels high. PayPal
crops images that are larger. PayPal places your logo image at the top of
the cart review area.

landingPage Type of PayPal Checkout to display.

Possible values are:
Billing – Non-PayPal account
Login – PayPal account login

channelType Type of channel.

Possible values are:
Merchant – Non-auction seller
eBayItem – eBay auction

solutionType Type of Checkout flow.

Possible values are:
Sole – Buyer does not need to create a PayPal account to check out.
This is referred to as PayPal Account Optional.
Mark – Buyer must have a PayPal account to check out.

totalType Type declaration for the label to be displayed in MiniCart for UX.

Possible values are:
Total
EstimatedTotal

brandName A label that overrides the business name in the PayPal account on the
PayPal Checkout.

113

Field Name Description

customerServiceNumber Merchant Customer Service number displayed on the PayPal Checkout.

buyerEmailOptInEnable Enables the buyer to provide an email address on the PayPal pages to be
notified of promotions or special events.

Possible values are:
0 – Do not enable buyer to provide email.
1 – Enable the buyer to provide email.

noteToBuyer A note from the merchant to the buyer that will be displayed in the PayPal
Checkout.

paymentAction Defines how to obtain payment. This can be used to override any
captureDelay setting that can also be used to indicate a Sale or

Authorisation only.

Possible values are:
Sale – sale with immediate capture.
Authorization – authorisation subject to later capture (note spelling).
Order – order subject to later authorisation and capture.

allowedPaymentMethod The payment method type. Specify the value InstantPaymentOnly

insuranceOptionOffered Indicates whether insurance is available as an option that the buyer can
choose on the PayPal Review page.

Possible values are:
true – The Insurance option displays 'Yes' and the insuranceAmount. If

true, the total shipping insurance for this order must be a positive number.
false – The Insurance option displays 'No'.

multiShipping Indicates whether this payment is associated with multiple shipping
addresses.

Possible values are:
0 – Single/No shipping address.
1 – Multiple shipping addresses.

noteText Note to the Merchant.

bucketCategoryType The category of a payment.

Possible values are:
1 – International shipping
2 – Local delivery
3 – BOPIS, Buy online pick-up in store
4 – PUDO, Pick-up drop-off

locationType Type of merchant location. Required if the items purchased will not be
shipped, such as, BOPIS (Buy Online Pick-up In Store) or PUDO (Pick-
Up Drop-Off) transactions.

Possible values are:
1 – Consumer.
2 – Store, for BOPIS transactions.
3 – PickupDropoff, for PUDO transactions.

114

Field Name Description

locationID Location ID specified by the merchant for BOPIS (Buy Online Pick-up In
Store) or PUDO (Pick-Up Drop-Off) transactions.

sellerPayPalAccountID Unique identifier for the Merchant. For parallel payments, this field is
required and must contain the Payer Id or the email address of the
Merchant.

invNum Merchant’s invoice or tracking number.

custom Custom field for your own use.

buyerID The unique identifier provided by eBay for this buyer. The value may or
may not be the same as the username. In the case of eBay, it is different.

buyerUsername The user name of the user at the marketplaces site.

buyerRegistrationDate Date when the user registered with the marketplace. In UTC/GMT format,
for example, 2013-08-24T05:38:48Z.

allowPushFunding Indicates whether the Merchant can accept push funding.

Possible values are:
0 – Merchant cannot accept push funding.
1 – Merchant can accept push funding.

userSelectedFundingSource This element could be used to specify the preferred funding option for a
guest user. However, the landingPage Checkout option must also be

set to Billing, otherwise it is ignored.

Possible values are:
ChinaUnionPay.
CreditCard.
ELV.
QIWI.

billingType Type of billing agreement for reference transactions. You must have
permission from PayPal to use this field.

Possible values are:
MerchantInitiatedBilling – PayPal creates a billing agreement for each
transaction associated with buyer.
MerchantInitiatedBillingSingleAgreement – PayPal creates a single billing
agreement for all transactions associated with buyer. Use this value
unless you need per-transaction billing agreements.

billingAgreementDescription Description of goods or services associated with the billing agreement.
This field is required for each recurring payment billing agreement.
PayPal recommends that the description contain a brief summary of the
billing agreement terms and conditions. For example, buyer is billed at
"9.99 per month for 2 years".

115

Field Name Description

paymentType Type of PayPal payment you require for the billing agreement.

Possible values are:
Any – The merchant accepts any payment method for the billing
agreement, even if it could take a few working days for the movement of
funds to the merchant account. This includes echeck, in addition to credit
or debit cards and PayPal balance.

InstantOnly – The payment options accepted by the merchant are credit
cards, debit cards or PayPal balance only because the merchant expects
immediate payment.

taxIDType Buyer's tax ID type. This field is required for Brazil and used for Brazil
only.

For Brazil use only: The tax ID type is BR_CPF for individuals and
BR_CNPJ for businesses.

taxID Buyer's tax ID. This field is required for Brazil and used for Brazil only.

For Brazil use only: The tax ID is 11 single-byte characters for individuals
and 14 single-byte characters for businesses

returnFMFDetails Flag to indicate whether you want the results returned by Fraud
Management Filters when doing a recurring/reference transaction.

Possible values are:
0 – Do not receive FMF details (default).
1 – Receive FMF details.

riskSessionCorrelationID The ID of the risk session for correlation purposes when doing a
recurring/reference transaction.

merchantSessionID The buyer session identification token when doing a recurring/reference
transaction.

buttonSource1 PayPal Partner’s BN Code (if required).

1 The BN code is the unique button source code provided by PayPal to its partners and added by its partners to the PayPal
buttons used by merchants to offer the PayPal Services that are enabled through Partner Product. The button source code
provides a means of identifying and tracking referred merchants' payments.

For further information on the options, refer to the PayPal Express Checkout documentation:
https://developer.paypal.com/docs/classic/api/merchant/SetExpressCheckout_API_Operation_NV
P/.

The options should be passed as either a nested record or serialised record as described in
section 1.5.8. The option names are case sensitive.

https://developer.paypal.com/docs/classic/api/merchant/SetExpressCheckout_API_Operation_NVP/
https://developer.paypal.com/docs/classic/api/merchant/SetExpressCheckout_API_Operation_NVP/

116

20.5.4 Purchase details (Hosted and Direct Integrations)

The following request fields may be sent to provide information on the purchased items and to
populate the cart on the PayPal Checkout.

Field Name Mandatory? Description

shippingAmount No Shipping costs.

shippingDiscountAmount No Discount applied to shipping costs.

handlingAmount No Handling costs.

insuranceAmount No Insurance costs.

itemXXDescription No Description of XXth item purchased.

itemXXQuantity No Quantity of XXth item purchased.

itemXXAmount No Gross amount for XXth item purchased.

itemXXTaxAmount No Tax amount for XXth item purchased.

itemXXProductCode No Product code for XXth item purchased.

itemXXProductURL No Shopping cart URL for XXth item purchased.

itemXXSize No Size of XXth item purchased in the format
‘LengthxWidthxHeight Unit’.

itemXXWeight No Weight of XXth item purchased in the format ‘Weight
Unit’.

items No Nested array of line items.

Refer to section 15.2 for more information on these fields.

Note: The shopping cart items must total to the amount specified in the transaction. If they do not,
cart items will not be sent to the PayPal Checkout.

117

20.6 Response Fields

20.6.1 Initial Response (Direct Integration)

These fields will be returned, in addition to the request fields from section 20.5.1 and the basic
response fields in section 2.2 minus any card details.

Field Name Mandatory? Description

checkoutRef Yes

Unique reference required to continue this
transaction when the PayPal Checkout has
completed.

checkoutName Yes Unique name of the Checkout. For PayPal this is the
value paypal.

checkoutURL Yes URL required to load the PayPal Checkout

checkoutRequest No Not required for PayPal.

checkoutOptions No Any Checkout options passed in the request.

acquirerResponseDetails Yes Details about the PayPal response containing any
error messages and codes. This can be used
together with the normal responseCode and

responseMessage response fields to determine

further the reason for any failure.

118

20.6.2 Continuation Response (Direct Integration)

These fields will be returned, in addition to the request fields from section 20.5.2, the initial
response fields in section 20.6.1 and the basic response fields in section 2.2 minus any card
details.

Field Name Mandatory? Description

checkoutRef Yes

Provided if checkoutOnly was used in the

continuation response to indicate that a further
request will be sent to finalise the transaction.

checkoutName Yes Unique name of the Checkout. For PayPal, this is the
value paypal.

checkoutDetails Yes Record containing options used to customise the
PayPal Checkout. Refer to section 20.6.3 for values.

customerXXXX No1 Customer details if provided by the PayPal Checkout
as documented in section 17.1

deliveryXXXX No1 Delivery details if provided by the PayPal Checkout
as documented in section 17.4

acquirerResponseDetails Yes Details about the PayPal response containing any
error messages and codes. This can be used
together with the normal responseCode and

responseMessage response fields to determine

further the reason for any failure.

119

20.6.3 Checkout Details (Hosted and Direct Integration)

The following details may be provided in the checkoutDetails field included in the response.

Field Name Mandatory? Description

correlationID No Correlation ID, which uniquely identifies the
transaction to PayPal.

checkoutStatus No Status of the Checkout session. If payment is
completed, the transaction identification number of
the resulting transaction is returned.

Possible values are:
PaymentActionNotInitiated
PaymentActionFailed
PaymentActionInProgress
PaymentActionCompleted

invNum No Merchant’s invoice or tracking number, as set sent in
checkoutDetails.invNum or assigned by the

Gateway.

custom No Merchant’s invoice or tracking number, as set sent in
checkoutDetails.custom or assigned by the

Gateway.

payPalAdjustment No A discount or gift certificate offered by PayPal to the
buyer. This amount is represented by a negative
amount. If the buyer has a negative PayPal account
balance, PayPal adds the negative balance to the
transaction amount, which is represented as a
positive value.

buyerMarketingEmail No1 Buyer's marketing email address.

note No2 Buyer’s note to the Merchant.

cartChangeTolerance No Indicates whether a cart's contents can be modified.
If this parameter is not returned, then assume the
cart can be modified. This will return NONE if
financing was used in Germany.

Possible values are:
NONE – The cart cannot be changed.
FLEXIBLE – The cart can be changed.

payerID No Buyer’s PayPal Customer Account ID.

1 The response will include Customer/billing address and delivery address details if provided by the PayPal Checkout.

2 Only available if the leaving of notes was enabled in the initial request using checkoutOptions.allowNote option.

120

Field Name Mandatory? Description

payerStatus No Buyer’s PayPal status.

Possible values are:
verified
unverified

billingName No1 Buyer’s name.
Also returned in customerName.

firstName No2 Buyer’s first name.
Also returned in customerName.

middleName No2 Buyer’s middle name.
Also returned in customerName.

lastName No2 Buyer’s last name.

Also returned in customerName.

suffix No2 Buyer’s name suffix.
Also returned in customerName.

business No Buyer's business name.
Also returned in customerCompany.

street No Buyer’s street first line.
Also returned in customerAddress.

street2 No Buyer’s street second line.
Also returned in customerAddress.

city No Buyer’s city
Also returned in customerTown.

state No Buyer’s state.
Also returned in customerCounty.

zip No Buyer’s postal code.
Also returned in customerPostcode.

countryCode No Buyer's country code. (ISO 2 char. code)
Also returned in customerCountryCode.

countryName No Buyer's country name.

phoneNum No Buyer's contact phone number.
Also returned in customerPhone.

email No Buyer’s email address.
Also returned in customerEmail.

1 Permission is needed from PayPal to support this field.
2 These fields are used when no permission to use billingName.

121

Field Name Mandatory? Description

shipToName No Name of person/entity to ship to.
Also returned in deliveryName.

shipToStreet No Ship to street first line.
Also returned in deliveryAddress.

shipToStreet2 No Ship to street second line.
Also returned in deliveryAddress.

shipToCity No Ship to city.
Also returned in deliveryTown.

shipToState No Ship to state.
Also returned in deliveryCounty.

shipToZip No Ship to postal code.
Also returned in deliveryPostcode.

shipToCountryCode No Ship to country code. (ISO 2 char. code)
Also returned in deliveryCountryCode.

shipToCountryName No Ship to country name.

shipToPhoneNum No Ship to phone number.
Also returned in deliveryPhone.

shipToAddressStatus No Status of shipping address on file with PayPal.

Possible values are:
none
Confirmed
Unconfirmed

addressNormalizationStatus No1 The PayPal address normalisation status for
Brazilian addresses.

Possible values are:
None
Normalized
Unnormalized
UserPreferred

amount No Total amount for this order.

itemAmount No Total item amount for this order.

taxAmount No Tax amount for this order.

exchangeRate No Exchange rate for this order.

shippingAmount No Shipping amount for this order.

handlingAmount No Handling amount for this order.

1 This field is passed directly to PayPal and therefore the field name and value must be spelt ‘ize’ and not ‘ise’.

122

Field Name Mandatory? Description

insuranceAmount No Insurance amount for this order.

shipDiscountAmount No Shipping discount amount for this order.

desc No Description of items the buyer is purchasing.

currencyCode No ISO 3-letter currency code.

isFinancing No Indicates whether the Customer ultimately was
approved for and chose to make the payment using
the approved instalment credit.

Possible values are:
FALSE – financing not in use
TRUE – financing approved and used

financingFeeAmount No The transaction financing fee associated with the
payment. This will be set to the instalment fee
amount that is the same as the estimated cost of
credit or the interest/fees amount the user will have
to pay during the lifetime of the loan. This field will
only be included in instalment credit orders. In the
case of “same as cash” or “no interest” offers, this
will be set to 0.

financingTerm No The length of the financing term, in months. Example
values are 6, 12, 18 and 24 months.

financingMonthlyPayment No This is the estimated amount per month that the
Customer will need to pay including fees and
interest.

financingTotalCost No This is the estimated total payment amount including
interest and fees that the user will pay during the
lifetime of the loan.

financingDiscountAmount No Discount amount for the buyer if paid in one
instalment.

regularTakeFeeAmount No Fee of the regular take rate on the transaction
amount. It could be equal to
financingDiscountAmount in the case of non-

instalment transactions.

noteText No Note to Merchant.

transactionID No PayPal transaction ID.

allowedPaymentMethod No The payment method type as specified in the initial
request.

paymentRequestID No A unique identifier of the specific payment request.

bucketCategoryType No The category of a payment as specified in the initial
request.

123

Field Name Mandatory? Description

instrumentCategory No Identifies the category of the promotional payment
instrument.

Possible values are:
1 – PayPal Credit® (formerly Bill Me Later®).
2 – A Private Label Credit Card (PLCC) or co-
branded payment card.

instrumentID No An instrument ID (issued by the external party)
corresponding to the funding source used in the
payment.

shippingCalculationMode No Describes how the options that were presented to the
buyer were determined.

Possible values are:
API – Callback
API – Flatrate

insuranceOptionSelected No The option that the buyer chose for insurance.

Possible values are:
Yes – opted for insurance.
No – did not opt for insurance.

shippingOptionIsDefault No Indicates whether the buyer chose the default
shipping option.

Possible values are:
true – chose the default shipping option.
false – did not choose the default shipping option.

shippingOptionAmount No The shipping amount that the buyer chose.

shippingOptionName No The name of the shipping option, such as Air or
Ground.

scheduledShippingDate No The scheduled shipping date is returned only if
scheduled shipping options are passed in the
request.

scheduledShippingPeriod No The scheduled shipping period is returned only if
scheduled shipping options are passed in the
request.

sellerPayPalAcountID No Unique identifier for the merchant. For parallel
payments, this field contains either the Payer ID or
the email address of the merchant.

taxIDType No Buyer's tax ID type. This field is required for Brazil
and used for Brazil only.

For Brazil use only: The tax ID type is BR_CPF for
individuals and BR_CNPJ for businesses.

124

Field Name Mandatory? Description

taxID No Buyer's tax ID. This field is required for Brazil and
used for Brazil only.

For Brazil use only: The tax ID is 11 single-byte
characters for individuals and 14 single-byte
characters for businesses

billingAgreementID No Identification number of the billing agreement. When
the buyer approves the billing agreement, it becomes
valid and remains valid until it is cancelled by the
buyer.

billingAgreementAcceptedStatus No Indicates whether the buyer accepted the billing
agreement for a recurring payment. Currently, this
field is always returned in the response for
agreement-based products, such as subscriptions;
reference transactions; recurring payments; and
regular single payment transactions.

0 – Not accepted.
1 – Accepted.

paymentStatus No Status of the payment.

Possible values are:
None – No status.
Canceled-Reversal – A reversal has been
cancelled: for example, when you win a dispute and
the funds for the reversal have been returned to you.
Completed – The payment has been completed and
the funds have been added successfully to your
account balance.
Denied – You denied the payment. This happens
only if the payment was previously pending because
of possible reasons described for the pendingReason

element.
Expired – The authorisation period for this payment
has been reached.
Failed – The payment has failed. This happens only
if the payment was made from your buyer's bank
account.
In-Progress – The transaction has not terminated:
for example, an authorisation may be awaiting
completion.
Partially-Refunded – The payment has been
partially refunded.
Pending – The payment is pending. See the
pendingReason field for more information.

Refunded – You refunded the payment.
Reversed – A payment was reversed due to a
chargeback or other type of reversal. The funds have
been removed from your account balance and
returned to the buyer. The reason for the reversal is
specified in the reasonCode element.

Processed – A payment has been accepted.

125

Field Name Mandatory? Description

Voided – An authorisation for this transaction has
been voided.

refundStatus No Status of the refund.

Possible value are:
none – returned if the refund fails
instant – refund was instant
delayed – refund was delayed

pendingReason No1 The reason the payment is pending.

Possible values are:
none – No pending reason.
address – The payment is pending because your
buyer did not include a confirmed shipping address
and your Payment Receiving Preferences is set such
that you want to accept or deny each of these
payments manually. To change your preference, go
to the Preferences section of your Profile.
authorization2 – The payment is pending because it
has been authorised but not settled. You must
capture the funds first.
echeck – The payment is pending because it was
made by an eCheck that has not yet cleared.
intl – The payment is pending because you hold a
non-U.S. account and do not have a withdrawal
mechanism. You must manually accept or deny this
payment from your Account Overview.
multi-currency – You do not have a balance in the
currency sent, and you do not have your Payment
Receiving Preferences set to automatically convert
and accept this payment. You must manually accept
or deny this payment.
order – The payment is pending because it is part of
an order that has been authorised but not settled.
payment-review – The payment is pending while it
is being reviewed by PayPal for risk.
regulatory-review – The payment is pending while
we make sure it meets regulatory requirements. You
will be contacted again from 24 to 72 hours with the
outcome of the review.
unilateral – The payment is pending because it was
made to an email address that is not yet registered or
confirmed.
verify – The payment is pending because you are
not yet verified. You must verify your account before
you can accept this payment.
other – The payment is pending for a reason other
than those listed above. For more information,
contact PayPal Customer Service.

1 pendingReason is returned in the response only if paymentStatus is Pending.
2 This value is received directly from PayPal and so will use the ‘ize’ and not ‘ise’ spelling.

126

Field Name Mandatory? Description

reasonCode No The reason for a reversal if the transaction type is
reversal.

Possible values are:
none – No reason code.
chargeback – A reversal has occurred on this
transaction due to a chargeback by your buyer.
guarantee – A reversal has occurred on this
transaction due to your buyer triggering a money-
back guarantee.
buyer-complaint – A reversal has occurred on this
transaction due to a complaint about the transaction
from your buyer.
refund – A reversal has occurred on this transaction
because you have given the buyer a refund.
other – A reversal has occurred on this transaction
due to a reason not listed above.

protectionEligibilityType No The kind of seller protection in force for the
transaction.

Possible values are:
ItemNotReceivedEligible – Merchant is protected
by PayPal's Seller Protection Policy for Item Not
Received.
UnauthorizedPaymentEligible1 – Merchant is
protected by PayPal's Seller Protection Policy for
Unauthorised Payments.
Ineligible – Merchant is not protected under the
Seller Protection Policy.
(Multiple values are separated by commas)

feeAmount No PayPal fee amount charged for the transaction.

settleAmount No Amount deposited in your PayPal account after a
currency conversion.

storeID No Store identifier as entered in the transaction.

terminalID No Terminal identifier as entered in the transaction.

1 This value is received directly from PayPal and so will use the ‘ize’ and not ‘ise’ spelling.

The details will be returned as a nested record as described in section 1.5.8. The detail names are
case sensitive.

127

20.7 Transaction Lifecycle

PayPal transactions will use the normal Authorise, Capture life cycle as documented in appendix
A-12.1 with the following differences. In addition, the PayPal paymentAction option can be
included in the checkoutOptions field to alter the normal payment lifecycle further, to allow an
Order, Authorise, Capture model or a straight Sale model to be specified.

20.7.1 Order

If a paymentAction with a value of ‘Order’ is sent, then PayPal will store the transaction but delay
authorising it until instructed. To instruct PayPal to authorise the transaction, a further
management request can be sent to the Gateway with an action of ‘AUTHORISE’ and the xref of
the transaction to authorise. Alternatively, the AUTHORISE command can be selected in the
Merchant Management System (MMS). The transaction will be left in the ‘received’ state.

20.7.2 Authorise

If no paymentAction is specified or a paymentAction with a value of ‘Authorize’ is sent, then
PayPal will authorise the transaction on receipt as per a standard card transaction and you can
capture it later if you used the captureDelay field. Note that the value uses the PayPal spelling
‘Authorize’, and not the British spelling ‘Authorise’.

For the first three days (by default) of the authorisation, funds are reserved. This is known as the
honour period. After the honour period, captures can still be attempted, but may be returned with
insufficient funds.

Authorisations have a fixed expiry period of 29 days.

20.7.3 Sale

If a paymentAction with a value of ‘Sale’ is sent, then PayPal will immediately capture the
transaction after authorisation. The transaction will be regarded as having been settled and you
will not be able to capture it manually and it will not be sent for settlement that evening. The
transaction will be left in either the accepted or rejected terminal states depending on whether
PayPal accepted or rejected the transaction.

20.7.4 Capture

Transactions that have been authorised by PayPal and not immediately settled due to a
paymentAction of ‘Sale’ will be able to be captured as normal.

Captures are sent to PayPal immediately and the PayPal response and the transaction will be left
in either the accepted or rejected terminal state depending on whether PayPal accepted or
rejected the capture request.

There is no need to wait for the nightly settlement batch to run as with normal card transactions.
This means that it is not possible to change the amount to be captured or cancel the transaction
one a capture has been requested.

128

Note: PayPal allows multiple captures where they sum the individual capture amounts – i.e. in a
different manner from the Gateway’s, where only a single capture operation can be processed.

20.7.5 Refund

PayPal transactions can be refunded in the same way as normal card transactions. However, in
the same way as capture requests, these will be sent to PayPal immediately and not batched up to
be sent as part of the nightly settlement process. This means that the transaction will be left in
either the accepted or rejected terminal state, depending on whether PayPal accepted or rejected
the refund request.

Refunds can be made for full or partial amounts, with multiple refunds allowed up to the original
authorised amount.

By default, PayPal allows a Merchant up to 60 days from the original authorised transaction date
to perform refunds.

20.7.6 Cancel

You should cancel any transactions that you do not wish to capture in order to prevent ‘pending’
transactions on the Customer’s PayPal account.

Authorisations should be cancelled when an initial authorisation was created to confirm the validity
of funds during checkout, but the goods will not ship for a significant amount of time (>29 days).
Cancelling the transaction will mean that you will have to contact the Customer for an alternative
payment method.

All transactions must be completed by being captured or cancelled.

20.7.7 Pending Payments

PayPal may put a transaction into a pending state when flagged for additional fraud review. This
state is known to PayPal as payment review or IPR.

IPR transactions will be automatically cancelled by the Gateway and treated as referred
transactions with a responseCode of 2 and a responseMessage indicating the reason that the
transaction was put into a pending state. Unlike card referred transactions, an authorisation code
cannot be obtained from PayPal verbally and then the transaction resent.

129

20.8 Reference Transactions

PayPal does not allow ad hoc ‘Card On File’ type repeat or recurring transactions using the xref of
a reference transaction unless that transaction has specifically started a PayPal Billing Agreement.

If you want to be able to make future repeat or recurring transactions, then the initial transaction
must include the billingType and billingAgreementDescription options in the checkoutOptions
to identify this transaction as the start of a recurring billing sequence.

This will cause the Gateway to request PayPal to set up a Billing Agreement between you and the
Customer. In this case, the PayPal Billing Agreement ID will be returned as part of the
checkoutDetails and displayed on the Merchant Management System (MMS) as part of the
payment details, so that you can easily see which PayPal transactions can be used for recurring
billing.

130

21 Amazon Pay Transaction

21.1 Background

Amazon Pay is an additional payment method that is available to all Merchants using the Gateway
that have an Amazon Pay account.

To use Amazon Pay, you will be supplied with a separate Amazon Pay Merchant account that can
be grouped with your main Merchant account using the account mapping facility as documented in
appendix A-6. This allows transactions to be sent using your main Merchant Account and then
routed automatically to the Amazon Pay Merchant Account in the same mapping group.

It allows you to offer payment via Amazon Pay in addition to normal card payments.

Amazon Pay transactions will appear in the Merchant Management System (MMS) alongside any
card payments and can be captured, cancelled and refunded in the same way as card payments.

Amazon Pay transactions can also be used for recurring billing but require you to indicate in the
initial transaction that it will be the basis for recurring billing and a billing agreement will be entered
into between your Customer and Amazon Pay when they agree to the payment.

Amazon Pay transactions cannot be used for ad-hoc ‘Card On File’ repeat transactions unless a
billing agreement has been set up.

For more information on how to accept Amazon Pay transactions, please contact customer
support.

Amazon Pay is supported by the Hosted and Direct Integrations. It is not supported by the
Batch Integration.

131

21.2 Benefits and Limitations

21.2.1 Benefits

• Provides your customers with the flexibility of paying using their Amazon Pay account when
this is more suitable to them.

• The Amazon Pay Checkout can be added as an overlay on the standard checkout to help
improve conversion rates with an easier way to pay without customers leaving your
website.

• There are no extra costs to add an Amazon Pay Merchant Account. However, you will still
be liable for the Amazon Pay transaction fees.

• The full Amazon Pay transaction information is available and returned as part of the
transaction.

• Transactions are controlled within the Merchant Management System (MMS) in the same
manner as normal card transactions.

21.2.2 Limitations

• You will need an Amazon Pay account.

• Recurring transactions are not supported unless part of a prearranged billing agreement.

• Independent refunds that are not tied to a previous sale transaction are not supported
without prior agreement.

• Transactions require a browser in order to display the Amazon Pay Checkout widgets.

132

21.3 Hosted Implementation

If a transaction is sent to the Hosted Integration using a merchantID that is part of a routing group
containing an Amazon Pay Merchant, then the Hosted Payment Page will display an Amazon Pay
payment button which, when clicked, will open the Amazon Pay Checkout and allow the Customer
to pay using their Amazon Pay account.

To customise the Amazon Pay Checkout experience, you may send various options in the
Amazon PayCheckoutOptions field in your initial request.

Additional information available from Amazon Pay will be made available in the checkoutDetails
response field.

Note: Custom Hosted Payment Pages might not support the displaying of the Amazon Pay
Checkout button. If you have a custom page that doesn’t support this, then you would need to
contact support to have your Hosted Payment Page upgraded.

133

21.4 Direct Implementation

Amazon Pay transactions require you to display an Amazon Pay Checkout to your Customer as
part of the transaction flow. The transaction must be done in two stages, with the Checkout page
being displayed between the stages. They can also optionally be done in three stages, allowing
you to display an order confirmation after the Checkout page and before authorising the
transaction. You can change the amount at this stage to allow for shipping costs when you know
the confirmed delivery address the Customer selected as part of the Amazon Pay Checkout.

Amazon Pay do not provide a ready built Checkout page and require you to create one on your
servers using the JavaScript widget toolkit they provide.

Amazon Pay supports the normal payment and management actions. This section explains how to
make payment requests. Management requests are performed as detailed in section 3.

21.4.1 Initial Request (Checkout Preparation)

To request that a transaction be processed via Amazon Pay, the request must contain a
paymentMethod of ‘Amazon Pay’ In addition, you may send checkoutOptions to customise the
Checkout experience. When the Gateway receives this paymentMethod, assuming there are no
other errors with the request, it will attempt to find a suitable Amazon Pay Merchant Account in the
current account mapping group.

If the Gateway is unable to find a suitable account, then the transaction will be aborted, and it will
respond with a responseCode of 66364 (INVALID PAYMENTMETHOD).

Otherwise, the Gateway will respond with a responseCode of 65826 (CHECKOUT REQUIRED)

and the response will include a checkoutURL field containing the URL required to load the
Amazon Pay JavaScript Widgets; and a checkoutRequest containing any data required by those
Widgets. The response will also contain a unique checkoutRef that must be echoed back in the
continuation requests.

At this point, your server must create an Amazon Pay Checkout page using their JavaScipt
Widgets. Further details on how to use the Widgets are provided in the Amazon Pay guide at
https://developer.Amazon Pay.com/docs/classic/express-checkout/in-
context/enable_in_context_checkout/.

21.4.2 Continuation Request (Checkout Details and Authorise)

On completion of the Amazon Pay Widgets, the Merchant should send the information created by
the Widgets to the Gateway together with a status value. If the Checkout was successful, the
status will be ‘success’; alternatively, if the Checkout was cancelled, the status will be ‘cancel’. Any
accessToken generated by the Amazon Pay Login Widget; orderReferenceID, generated by the
Wallet or Address Widgets; and billingAgreementID generated by the optional Billing Widget,
must be added to the checkoutResponse field and sent in a new request to the Gateway. The
checkoutResponse field can be sent either as a URL query string; as a JSON encoded string; or
as an array of parameters. This new request will load the Checkout details, including any
purchaser and delivery address details as required, and send the transaction to Amazon Pay for

https://pay.amazon.com/us/developer/documentation/lpwa/201954000
https://pay.amazon.com/us/developer/documentation/lpwa/201954000

134

authorisation, returning the result as in the case of a normal authorisation transaction. The new
request must contain the checkoutRef received in the initial response.

21.4.3 Separate Checkout Details and Authorisation Requests

You can choose to obtain the Checkout details before sending the transaction for authorisation by
sending the checkoutOnly field in the above continuation request. If this field is sent with a value
of ‘Y’ then the Gateway will load the Checkout details and then return them to you without sending
the request for authorisation. You can then display them and/or adjust the amount, for example,
according to delivery charges appropriate to the received delivery address. You should then send
a new request containing the checkoutRef received to continue the transaction and authorise it.

Note: this stage can be repeated multiple times by including the checkoutOnly field with a value
of ‘Y’ each time. To complete the transaction, the final request must not contain the checkoutOnly
field or it must not have a value of ‘Y’.

135

21.5 Request Fields

21.5.1 Initial Request (Hosted and Direct Integration)

These fields should be sent in addition to basic request fields in section 2.1 excluding any card
details.

Field Name Mandatory? Description

paymentMethod Yes1 Must contain the value ‘Amazon Pay’ in lower case
letters only.

checkoutRedirectURL No2 Reserved for future use.

checkoutOptions No3 Record containing options used to customise the
Amazon Pay Checkout. Refer to section 22.5.3 for
values.

Amazon PayCheckoutOptions No4 Record containing options used to customise the
Amazon Pay Checkout. Refer to section 22.5.3 for
values.

1 Optional for Hosted Integration
2 Not required for Hosted Integration.
3 Direct Integration Only
4 Hosted Integration Only

21.5.2 Continuation Request (Direct Integration)

These fields may be sent alone1.

Field Name Mandatory? Description

checkoutRef Yes

Unique reference return in the initial response.

checkoutResponse Yes The data received from the Amazon Pay Checkout
Widgets together with a status value.

checkoutOnly No Pass Y to complete the processing as far as the next
Checkout stage and then return with the loaded
Checkout details.

1 It is only necessary to send the checkoutRef and the checkoutResponse in the continuation request because the

checkoutRef will identify the Merchant Account and initial request. The message does not have to be signed. You can

send any of the normal request fields to modify or supplement the initial request – however, in this case the request
should be signed. The checkoutRedirectURL and checkoutOptions fields sent in the initial request cannot be

modified and any sent in the second request must match those used in the first request, or the second request will fail with
a responseCode of 64442 (REQUEST MISMATCH).

136

21.5.3 Checkout Options (Hosted and Direct Integration)

The following options may be sent in the Amazon PayCheckoutOptions Hosted Integration field
or the checkoutOptions Direct Integration field to customise the Amazon Pay Checkout.

Field Name Description

billingAgreementRequired Can be used to specify that a billing agreement must be started.
Alternatively, the rtAgreementType standard integration field can be

used with a value of ‘recurring’ or ‘instalment’.

shippingAddressRequired Indication that the shipping address is required, and the Address
Checkout Widget will be used.

sellerOrderID The Merchant specified identifier for this order. If not sent, then any value
in the merchantOrderRef standard integration field is used.

sellerNote Represents a description of the order that is displayed in emails to the
buyer.

sellerAuthorizationNote A description for the authorisation transaction that is shown in emails to
the buyer.

sellerCaptureNote A description for the capture that is displayed in emails to the buyer.

sellerBillingAgreementID The Merchant specified identifier for this billing agreement. If not sent,
then any value in the rtPolicyRef standard integration field is used.

customInformation Any additional information that you want to include with this order
reference

supplementaryData Supplementary data.

softDescriptor The description to be shown on the buyer's payment statement

billingAgreementRequired Can be used to specify that a billing agreement must be started.
Alternatively, the rtAgreementType standard integration field can be

used with a value of ‘recurring’ or ‘instalment’.

shippingAddressRequired Indication that the shipping address is required, and the Address
Checkout Widget will be used.

For further information on the options refer to the Amazon Pay API Reference Guide:
https://pay.amazon.com/us/developer/documentation/apireference/201751630

The options should be passed as either a nested record or serialised record as described in
section 1.5.8. The option names are case sensitive.

https://pay.amazon.com/us/developer/documentation/apireference/201751630

137

21.5.4 Response Fields

21.5.5 Initial Response (Direct Integration)

These fields will be returned in addition to the request fields from section 22.5.1 and the basic
response fields in section 2.2 minus any card details.

Field Name Mandatory? Description

checkoutRef Yes

Unique reference required to continue this
transaction when the Amazon Pay Checkout has
completed.

checkoutName Yes Unique name of the Checkout. For Amazon Pay this
is the value Amazon Pay.

checkoutURL Yes URL required to load the Amazon Pay JavaScript
Widgets.

checkoutRequest No Information required for the Amazon Pay Widgets
such as:

• merchantID – Amazon Pay merchant ID

• clientID – Amazon Pay client ID

• sandbox – true if Amazon Pay sandbox

• region – Amazon Pay API region code

• scope – Login Widget scope parameter

checkoutOptions No Any Checkout options passed in the request.

acquirerResponseDetails Yes Details about the Amazon Pay response containing
any error messages and codes. This can be used
together with the normal responseCode and

responseMessage response fields to further

determine the reason for any failure.

138

21.5.6 Continuation Response (Direct Integration)

These fields will be returned in addition to the request fields from section 22.5.2, the initial
response fields in section 20.6.1 and the basic response fields in section 2.2 minus any card
details.

Field Name Mandatory? Description

checkoutRef Yes

Provided if checkoutOnly was used in the

continuation response to indicate that a further
request will be sent to finalise the transaction.

checkoutName Yes Unique name of the Checkout. For Amazon Pay this
is the value Amazon Pay.

checkoutDetails Yes Record containing values made available by the
Amazon Pay Checkout. Refer to section 21.5.7 for
values.

customerXXXX No11 Customer details if provided by the Amazon Pay
Checkout as documented in section 17.1

deliveryXXXX No Delivery details if provided by the Amazon Pay
Checkout as documented in section 17.4

receiverXXXX No Buyer details if provided by Amazon Pay as
documented in section 17.5. Amazon Pay will usually
provide the buyer’s name, postcode and email only,
which are returned in the receiverName,

receiverPostcode and receiverEmail fields

accordingly

acquirerResponseDetails Yes Details about the Amazon Pay response containing
any error messages and codes. This can be used
together with the normal responseCode and

responseMessage response fields to further

determine the reason for any failure.

11 The response will include Customer/billing address and delivery address details if provided by the Amazon Pay
Checkout.

139

21.5.7 Checkout Details (Hosted and Direct Integration)

The checkoutDetails field included in the response above will contain the following values and
any further values received from Amazon Pay allowing the Merchant to see the full Amazon Pay
order information.

Field Name Mandatory? Description

referenceID No Amazon Pay reference id. Either the
orderReferenceID or the billingReferenceID

where appropriate.

accessToken No Amazon Pay order reference id as sent in the
continuation request checkoutResponse data.

bilingAgreementID No Amazon Pay order reference id as sent in the
continuation request checkoutResponse data.

orderReferenceID No Amazon Pay order reference id as sent in the
continuation request checkoutResponse data.

The details will be returned as a nested record as described in section 1.5.8. The detail names are
case sensitive.

140

21.6 Transaction Lifecycle

Amazon Pay transactions will use the normal Authorise, Capture life cycle as documented in
appendix A-12.1 with the following differences.

21.6.1 Capture

Captures made by the Direct Integration or Merchant Management System (MMS) are sent to
Amazon Pay immediately. The transaction will be left in either the accepted or rejected terminal
state depending on whether Amazon Pay accepted or rejected the capture request. Unlike card
payments, captures do not flag the transaction to be included in the nightly settlement batch and
therefore when done they cannot be redone. This means that it is not possible to change the
amount to be captured or cancel the transaction when a capture has been requested.

Captures that are not explicitly performed such as normal transactions or those with a
captureDelay are still done as part of the nightly settlement batch.

Transactions that are not captured within 3 days will be placed in a pending state in the Amazon
Pay system which is reflected as the tendered state in the Gateway and will show on the
Merchant Management System as being settled.

21.6.2 Refund Sale

Amazon Pay transactions can be refunded the same as normal card transactions however, like
capture requests, these will be sent to Amazon Pay immediately and not batched up and sent as
part of the nightly settlement process. This means the transaction will be left in either the
accepted or rejected terminal state depending on whether Amazon Pay accepted or rejected the
refund request.

Refunds can be made for full or partial amounts, with multiple refunds allowed up to the original
authorised amount.

141

21.7 Reference Transactions

Amazon Pay does not allow ad hoc ‘Card On File’ type repeat or recurring transactions using the
xref of a reference transaction unless that transaction has specifically started a Amazon Pay
Billing Agreement.

If you want to be able to make future repeat or recurring transactions, then the initial transaction
must include an rtAgreementType of recurring or instalment. Alternatively, the
billingAgreementRequired option can be included in the checkoutOptions to identify this

transaction as the start of a recurring billing sequence.

This will cause the Gateway to request Amazon Pay setup a Billing Agreement between you and
the Customer. In this case the Amazon Pay Billing Consent Widget must be used in the Checkout
and the billingAgreementID it creates sent in the checkoutResponse data in the continuation
request. Any billing agreement ID will be displayed on the Merchant Management System (MMS)
as part of the payment details so that you can easily see which Amazon Pay transactions can be
used for recurring billing.

142

22 PPRO Transactions

22.1 Background

PPRO is an additional payment method that is available to all Merchants using the Gateway that
have a PPRO account.

To use PPRO, you will be supplied with a separate PPRO Merchant account that can be grouped
with your main Merchant Account using the account mapping facility as documented in appendix
A-6. This allows transactions to be sent using your main Merchant Account and then routed
automatically to the PPRO Merchant Account in the same mapping group.

PPRO is an Acquirer that offers many Alternative Payment Methods (APM), that you can then
offer to your Customers.

E-wallets, SMS payments and PSP services are some of the many payment methods PPRO
support (e.g. Alipay, EasyPay, Bancontact). This could allow a business to facilitate overseas
transactions or alternative payment methods using a different payment method suitable for that
country or business plan.

All transactions created with this payment method will appear in the Merchant Management
System (MMS) together with the payment method that was used to process the transaction.

PPRO transactions cannot be used for ad-hoc ‘Card On File’ repeat transactions or for recurring
billing.

For more information on how to accept PPRO transactions please contact customer support.

PPRO is supported by the Hosted and Direct Integrations. It is not supported by the Batch
Integration.

143

22.2 Benefits and Limitations

22.2.1 Benefits

• Multiple alternative payment methods could be used.

• Expands range of payment methods for international use.

• Supports a variety of e-wallets, SMS and PSP’s.

• Ability to perform refunds on supported payment methods.

• Transactions are controlled within the Merchant Management System (MMS) in the same
manner as normal card transactions.

22.2.2 Limitations

• You will need a PPRO account.

• Payment authorisation is not always instantaneous and may require additional ‘QUERY’
requests.

• An alternative payment method may only support one or a limited set of currencies or
countries.

• Alternative payment methods require a browser in order to display their Checkout.

144

22.3 Hosted Implementation

If a transaction is sent to the Hosted Integration using a merchantID which is part of a routing
group containing a PPRO Merchant Account, then the Hosted Payment Page will show alternative
payment method buttons for each payment method listed in the allowedPaymentMethods field.
When clicked on the Hosted Payment Page may request further details from the Customer before
opening the APM Checkout allowing the Customer to pay using that APM.

To customise the alternative payment methods checkout experience, you may send various
options in the pproCheckoutOptions field in your initial request.

Additional information available from PPRO will be made available in the checkoutDetails
response field.

Note: Custom Hosted Payment Pages might not support the displaying of the Alternative Payment
Methods. If you have a custom page that doesn’t support this, then you would need to contact
support to have your Hosted Payment Page upgraded.

145

22.4 Direct Implementation

PPRO transactions require you to display the alternative payment method’s Checkout to your
Customer as part of the transaction flow. The transaction must be done in two stages with the
Checkout being displayed between the stages.

PPRO supports only supports the SALE, REFUND_SALE actions. This section explains how to
make payment requests. Management request are performed as detailed in section 3.

22.4.1 Payment Request

To request that a transaction be processed via PPRO the request must contain a
paymentMethod of ‘ppro.XXXX’, where XXXX is the PPRO payment method tag listed in section
22.4.3 below. The request must also have a checkoutRedirectURL containing the URL of a
page on your server to return to when the alternative payment method’s Checkout is closed. In
addition, you may send checkoutOptions to provide further custom fields requited by the
alternative payment method as details in section 22.4.2 below.

When the Gateway receives these fields, assuming there are no other errors with the request, it
will attempt to find a suitable PPRO Merchant Account in the current account mapping group.

If the Gateway is unable to find a suitable account, then the transaction will be aborted, and it will
respond with a responseCode of 66364 (INVALID PAYMENTMETHOD).

Otherwise the Gateway will respond with a responseCode of 65826 (CHECKOUT REQUIRED)

and included in the response will be a checkoutURL field containing the URL that the buyer’s
browser should be redirected to in order to complete the payment. The response will also contain
a unique checkoutRef which must be echoed back in the continuation requests.

On completion of the third-party payment the browser will be directed to the
checkoutRedirectURL you provided, complete with information about the payment in a HTTP
POST request. The posted data will contain a checkoutResponse field that will contain any
specific response data for the payment method.

22.4.2 Payment Specific Fields

Most of the information required by the alternative payment methods can be supplied using the
standard Gateway request fields. However, there may be specific mandatory fields required by a
payment method which are not available using the standard fields. In these cases, these fields can
be sent in the checkoutOptions data.

For example, most European services may require the nationalid and consumerref fields.

Recurring transactions will require the use of iban (optionally sequencetype) and in follow-up

payments; mandatereference, mandatesignaturedate, and sequencetype.

146

Customer support will be able to help guide you on any missing fields you may find the transaction
will come up with a responseCode of 65550 (PROCESSOR_ERROR - Invalid request data).

22.4.3 Payment Method Tags

To specify which alternative payment method is required you need to send the
paymentMethod field with a value using the format is ‘ppro.XXXX’, where XXXX is the alternative

payment method’s tag name as assigned by PPRO.

For example; to use the alternative payment method AstroPay Card that has a tag name of
“astropaycard” (all lowercase); the resulting payment method code would be “ppro.astropaycard”.
This allows the Gateway to know that you’re attempting to use AstroPay Card using the PPRO
payment method.

The table below is a guide to the tag names available. This list is fluid as PPRO add and remove
methods.

If you know of a payment method that is not on this list or the payment method cannot be used;
please contact customer support for advice.

Tag Name

affinbank Affin bank

alipay AliPay

ambank AmBank

argencard Argencard

astropaycard AstroPay Card

astropaydirect AstroPay Direct

aura Aura

baloto Baloto

banamex Banamex

bancodobrasil Banco do Brasil

bancodechile Banco de Chile

bancodeoccidente Banco de Occidente

bancomer Bancomer

bankislam Bank Islam

bcmc Bancontact

bitpay Bitpay

boleto Boleto Bancario

147

bradesco Bradesco

cabal Cabal

cartaomercadolivre Cartao Mercado Livre

carulla Carulla

ccauth Credit/Debit Card

ccweb Credit/Debit Card

cencosud Cencosud

cimbclicks CIMB Clicks

cmr CMR

davivienda Davivienda

directpay Sofortüberweisung (Direct Pay)

dragonpay Dragonpay

easypay EasyPay

efecty Efecty

elo Elo

empresedeenergia Emprese de Energia

enets eNETS

entercash Entercash

eps EPS

estonianbanks Estonian Banks

giropay Giropay

hipercard Hipercard

hongleongbank Hong Leong Bank

ideal iDEAL

instanttransfer Instant Transfer

int_payout International Pay-Outs

itau Itau

latvianbanks Latvian Banks

lithuanianbanks Lithuanian Banks

148

magna Magna

maxima Maxima

maybanktwou Maybank2u

multibanco Multibanco

mybank MyBank

myclearfpx MyClear FPX

naranja Naranja

narvesen Narvesen

nativa Nativa

oxxo OXXO

p24 Przelewy24

p24payout Przelewy24 Payout

pagofacil Pago Facil

paypost PayPost

paysafecard Paysafe Card

paysbuy Paysbuy

paysera Paysera

payu PayU

perlas Perlas Terminals

poli OLI

presto Presto

pse PSE

pugglepay Pugglepay

qiwi QIWI

qiwipayout QIWI Payout

rapipago Rapipago

redpagos Redpagos

rhbbank RHB Bank

safetypay SafetyPay

149

santander Santander

sepadirectdebit SEPA DirectDebit

sepapayout SEPA Payout

seveneleven Seveneleven (7eleven)

singpost SingPost

skrill Skrill

surtimax Surtimax

tarjetashopping Tarjeta Shopping

trustly Trustly

trustpay TrustPay

unionpay UnionPay

verkkopankki Verkkopankki – Finish Online Banking

webpay Webpay

yellowpay Yellow Pay

150

22.5 Request Fields

22.5.1 Initial Request (Hosted and Direct Integration)

These fields should be sent in addition to the basic request fields in section 2.1 excluding any card
details.

Field Name Mandatory? Description

paymentMethod Yes1 Payment method to be used with PPRO (e.g.
ppro.astropay, ppro.alipay, etc.).

checkoutRedirectURL Yes2 URL on Merchant’s server to return to when the
Alternative Payment Method’s Checkout is closed.

checkoutOptions No3,4 Record containing options used to customise the
alternative payment methods Checkout. Refer to
section 22.5.2 for values.

pproCheckoutOptions No5,4 Record containing options used to customise the
alternative payment methods Checkout. Refer to
section 22.5.2 for values.

1 Optional in Hosted Integration.
2 Not required for Hosted Integration.
3 Direct Integration only.
4 Whilst the Gateway does not see this field as mandatory, PPRO may have payment methods that require additional
configuration using checkout options.
5 Hosted Integration Only

151

22.5.2 Checkout Options (Hosted and Direct Integration)

The following options may be sent in the pproCheckoutOptions Hosted Integration field or the
checkoutOptions Direct Integration field to customise the Checkout.

Field Name Description

nationalid Consumer’s national ID (up to 30 characters).

consumerref Unique reference identifying the consumer within 1 to 20 characters and a
format of A-Za-z0-9.%,&/+*$-

siteid Unique site identifier. Required for clients serving multiple points of sale and
forwarded onwards whilst using the qiwi payment method.

iban Valid IBAN of consumer/destination account.

sequencetype Sequence type of the direct debit.

Possible values are:
oneOff – The direct debit is executed once (default)
first – First direct debit in a series of recurring ones

mandatereference Mandate reference as returned on the first transaction in the sequence (found
from mandatereference in checkoutDetails)

mandatesignaturedate Date of the initial transaction.

bic Valid BIC (8 or 11 alphanumeric letters) – optionally supplied to skip the bank
selection page (by using the bank referenced by BIC as supplied)

clientip Optional IP address of the consumer during checkout using Trustly (127.0.0.1
is not allowed!)

address Customer’s billing address1

city Customer’s billing city1

phone Customer’s phone1

mobilephone Customers mobile phone1

dob MCC 6012 Date of Birth1

dynamicdescriptor Statement narrative1

1 This information is supplied to PPRO by default using the following fields: customerAddress, customerPostcode,
customerTown, customerEmail, customerPhone, customerMobile, receiverDateOfBirth, statementNarrative1.

The options should be passed as either a nested record or serialised record as described in
section 1.5.8. The option names are case sensitive.

152

22.6 Response Fields

22.6.1 Initial Response (Direct Integration)

The fields below will be returned in addition to the basic response fields in section 2.2 for the start
of a PPRO transaction and the PPRO checkout process.

Field Name Mandatory? Description

checkoutRef Yes

Unique reference required to continue this
transaction when the PPRO Checkout has
completed.

checkoutName Yes

The paymentMethod you used to identify the PPRO

payment method.

checkoutRedirectURL Yes

The URL to redirect the Customer to, to start the
checkout process.

checkoutOptions Yes The same checkoutOptions used for the request.

checkoutDetails Yes

Additional information provided from the payment
method used during checkout.

checkoutRef Yes

The unique reference required to continue the
transaction when PPRO checkout is complete.

checkoutRequest Yes

Containing the redirect secret, checksum and
request status.

22.6.2 Completion Response (Hosted and Direct Integration)

Fields from the initial response in the previous section may be present as well as the fields below
and will not contain any card details.

Field name Mandatory? Description

checkoutResponse Yes

Containing additional information provided by the
Checkout. Any change in the payment’s status will
be given in responseMessage and responseCode1

checkoutStatus Yes

A string containing the result of the checkout
process. This is not used to identify the
transaction’s payment status.

1 Not all payment methods give an immediate payment status. This will require a further QUERY to the Gateway to see
whether this value has changed to a status of ‘tendered’.

153

22.6.3 Notifications and “Tendered” Payments

Whilst some payment methods give an immediate payment status (i.e. direct card payment
methods rather than SMS and e-wallet systems), some payments may come back with the status
of ‘tendered’. At this time, online shopping modules will not be able to monitor the transaction
status. The use of a QUERY request may be of use as seen in section 1.7.8. Please ask customer
support in this matter who will be able to give more information and may be able to provide better
advice for your situation.

Notifications from PPRO regarding the payment status, seconds, minutes or hours after the
checkout will automatically update the transaction status.

154

23 Digital Wallet Transactions

23.1 Background

The Gateway currently supports payments made using the following Digital Wallets:

• Google Pay

• Apple Pay

These are collectively known as ‘The Pays’.

These wallets can be used to enhance mobile purchasing experiences for customers with
supported devices and produce a payment token which can be passed to the Gateway instead of
the Cardholder’s actual card details.

You can use these wallets with any Merchant Account that has been configured to accept them.

For more information on how to accept payment tokens, please contact customer support.

Digital Wallets are currently supported by the Direct Integration only. They are not
supported by the Hosted or Batch Integration.

Note, both Apple Pay and Google Pay are available via accredited Acquirers only.

155

23.2 Benefits and Limitations

23.2.1 Benefits

• The payment details are stored externally to the Gateway and can be used with any
Merchant that supports the appropriate payment tokens.

• Customers can select from previously stored payment details, making the checkout process
more streamlined, resulting in fewer abandoned carts and thus increasing sales.

• Compatible with existing card base fraud solutions such as Address Verification Service
(AVS), 3-D Secure and third-party fraud providers.

• There are no extra costs to add these payment methods to your Gateway account.

• The transactions are controlled within the Merchant Management System (MMS) in the
same manner as normal card transactions.

23.2.2 Limitations

• Your Customer will need a digital wallet enabled device with some stored card details in
order to make full use of this payment method.

• The device needs to be integrated with the gateway using third-party provided software.

• Repeat transactions using the retrieved payment details are supported.

156

23.3 Configuration

The Merchant Account being used for the payments must be configured with your Digital Wallet
credentials so that the Gateway can decrypt the payment token.

23.3.1 Apple Pay configuration

Apple Pay requires the Gateway to generate public/private key pair and then the public key must
be shared with your Android Pay enabled application in the guise of an Apple Pay payment
process certificate.

To configure an Apple Pay payment processing certificate you must have enrolled in the Apple
Developer Program and created a unique Apple Pay merchant identifier.

The payment processing certificate is associated with your merchant identifier and used to encrypt
payment information. The certificate expires every 25 months. If the certificate is revoked, you can
recreate it.

You would normally use the Merchant Management System (MMS) to configure your payment
processing certificate by following the steps outlined below:

1. Open the Apple Developer Certificates, Identifiers & Profiles webpage and select
'Identifiers' from the sidebar.

2. Under 'Identifiers', select 'Merchant IDs' using the filter in the top-right.
3. On the right, select your merchant identifier.
4. Under 'Apple Pay Payment Processing Certificate', click 'Create Certificate'.
5. Download our certificate signing request (CSR) from the MMS and save to a file.
6. Click 'Choose File' and select the CSR you just downloaded.
7. Click 'Continue'.
8. Click 'Download' to download the payment processing certificate and save to a file.
9. Upload the payment processing certificate to the MMS.

23.3.2 Google Pay configuration

Google Pay requires no specific configuration however you must use our Gateway identifier of
‘crst’ and the correct Merchant Account identifier when configuring your Google Pay enabled
application.

https://help.apple.com/developer-account/#/devb2e62b839?sub=devf31990e3f
https://developer.apple.com/programs/
https://developer.apple.com/programs/
https://help.apple.com/developer-account/#/devb2e62b839?sub=dev103e030bb
https://help.apple.com/developer-account/#/devb2e62b839?sub=devf31990e3f
https://help.apple.com/developer-account/#/devb2e62b839?sub=devf31990e3f
https://developer.apple.com/account/resources
https://www.cardstream.net/admin/preferences.php?process=applepay-csr&ajax=1

157

23.4 Hosted Implementation

Transactions using Digital Wallet payment methods are currently not supported by the Hosted
Integration.

158

23.5 Direct Implementation

Digital Wallet payments require the secure payment token generated by the wallet enabled
application to be sent to the Gateway in the paymentToken field. The type of token must be
specified by also sending the paymentMethod field with a value of ‘applepay’ or ‘googlepay’.

23.6 Request Fields

These fields should be sent instead of the standard card details together with the fields in section
2.1.

Field Name Mandatory? Description

paymentMethod Yes The type of payment token sent.

applepay – to indicate an Apple Pay token
googlepay – to indicate a Google Pay token

paymentToken Yes Must contain the secure payment token produced by
the wallet enabled application.

23.7 Response Fields

There are no additional response fields.

159

A-1 Response Codes

The Gateway will always issue a responseCode to report the status of the transaction. These

codes should be used rather than the responseMessage field to determine the outcome of a

transaction.

A zero response code always indicates a successful outcome.

Response codes are grouped as follows, the groupings are for informational purposes only and
not all codes in a group are used:

Acquirer (FI) Error codes: 1-99

Code Description

0 Successful / authorised transaction.

Any code other than 0 indicates an unsuccessful transaction.

1 Card referred – Refer to card issuer.

2 Card referred – Refer to card issuer, special condition.

4 Card declined – Keep card.

5 Card declined.

30 An error occurred. Check responseMessage for more detail.

General Error Codes: 65536 - 65791

Code Description

65536 Transaction in progress. Contact customer support if this error occurs

65537 Reserved for future use. Contact customer support if this error occurs

65538 Reserved for future use. Contact customer support if this error occurs

65539 Invalid Credentials: merchantID is unknown

65540 Permission denied: caused by sending a request from an unauthorised IP address

65541 Action not allowed: the transaction state or Acquirer doesn’t support this action

65542 Request Mismatch: fields sent while completing a request do not match initially requested values.
Usually due to sending different card details to those used to authorise the transaction when completing
a 3-D Secure transaction or performing a REFUND_SALE transaction.

65543 Request Ambiguous: request could be misinterpreted due to inclusion of mutually exclusive fields

65544 Request Malformed: couldn’t parse the request data

65545 Suspended Merchant account

160

General Error Codes: 65536 - 65791

Code Description

65546 Currency not supported by Merchant

65547 Request Ambiguous, both taxValue and discountValue provided when should be one only

65548 Database error

65549 Payment processor communications error

65550 Payment processor error

65551 Internal Gateway communications error

65552 Internal Gateway error

65553 Encryption error.

65554 Duplicate request. Refer to Section 14.

65555 Settlement error.

65556 AVS/CV2 Checks are not supported for this card (or Acquirer)

65557 IP Blocked: Request is from a banned IP address

65558 Primary IP blocked: Request is not from one of the primary IP addresses configured for this Merchant
Account

65559 Secondary IP blocked: Request is not from one of the secondary IP addresses configured for this
Merchant Account

65560 Reserved for future use. Contact customer support if this error occurs

65561 Unsupported Card Type: Request is for a card type that is not supported on this Merchant Account

65562 Unsupported Authorisation: External authorisation code authCode has been supplied and this is not

supported for the transaction or by the Acquirer

65563 Request not supported: The Gateway or Acquirer does not support the request

65564 Request expired: The request cannot be completed as the information is too old

65565 Request retry: The request can be retried later

65566 Test Card Used: A test card was used on a live Merchant Account

65567 Unsupported card issuing country: Request is for a card issuing country that is not supported on this
Merchant Account

65568 Unsupported payment type: Request uses a payment type which is not supported on this Merchant
Account

161

3-D Secure Error Codes: 65792 - 66047

Code Description

65792 3-D Secure transaction in progress. Contact customer support if this error occurs

65793 Unknown 3-D Secure Error

65794 3-D Secure processing is unavailable. Merchant account doesn’t support 3-D Secure

65795 3-D Secure processing is not required for the given card

65796 3-D Secure processing is required for the given card

65797 Error occurred during 3-D Secure enrolment check

65798 Reserved for future use. Contact customer support if this error occurs

65799 Reserved for future use. Contact customer support if this error occurs

65800 Error occurred during 3-D Secure authentication check

65801 Reserved for future use. Contact customer support if this error occurs

65802 3-D Secure authentication is required for this card

65803 3-D Secure enrolment or authentication failure and Merchant 3-D Secure preferences are to STOP
processing

Missing Request Field Error Codes: 66048 - 66303

Code Description

66048 Missing request. No data posted to integration URL

66049 Missing merchantID field

66050 Reserved for future use. Contact customer support if this error occurs

66051 Reserved for internal use. Contact customer support if this error occurs

66052 Reserved for internal use. Contact customer support if this error occurs

66053 Reserved for internal use. Contact customer support if this error occurs

66054 Reserved for internal use. Contact customer support if this error occurs

66055 Missing action field

66056 Missing amount field

66057 Missing currencyCode field

66058 Missing cardNumber field

66059 Missing cardExpiryMonth field

66060 Missing cardExpiryYear field

162

Missing Request Field Error Codes: 66048 - 66303

Code Description

66061 Missing cardStartMonth field (reserved for future use)

66062 Missing cardStartYear field (reserved for future use)

66063 Missing cardIssueNumber field (reserved for future use)

66064 Missing cardCVV field

66065 Missing customerName field

66066 Missing customerAddress field

66067 Missing customerPostCode field

66068 Missing customerEmail field

66069 Missing customerPhone field (reserved for future use)

66070 Missing countyCode field

66071 Missing transactionUnique field (reserved for future use)

66072 Missing orderRef field (reserved for future use)

66073 Missing remoteAddress field (reserved for future use)

66074 Missing redirectURL field

66075 Missing callbackURL field (reserved for future use)

66076 Missing merchantData field (reserved for future use)

66077 Missing origin field (reserved for future use)

66078 Missing duplicateDelay field (reserved for future use)

66079 Missing itemQuantity field (reserved for future use)

66080 Missing itemDescription field (reserved for future use)

66081 Missing itemGrossValue field (reserved for future use)

66082 Missing taxValue field (reserved for future use)

66083 Missing discountValue field (reserved for future use)

66084 Missing taxDiscountDescription field (reserved for future use)

66085 Missing xref field (reserved for future use)

66086 Missing type field (reserved for future use)

66087 Missing signature field (field is required if message signing is enabled)

163

Missing Request Field Error Codes: 66048 - 66303

Code Description

66088 Missing authorisationCode field (reserved for future use)

66089 Missing transactionID field (reserved for future use)

66090 Missing threeDSRequired field (reserved for future use)

66091 Missing threeDSMD field (reserved for future use)

66092 Missing threeDSPaRes field

66093 Missing threeDSECI field

66094 Missing threeDSCAVV field

66095 Missing threeDSXID field

66096 Missing threeDSEnrolled field

66097 Missing threeDSAuthenticated field

66098 Missing threeDSCheckPref field

66099 Missing cv2CheckPref field

66100 Missing addressCheckPref field

66101 Missing postcodeCheckPref field

66102 Missing captureDelay field

66103 Missing orderDate field

66104 Missing grossAmount field

66105 Missing netAmount field

66016 Missing taxRate field

66016 Missing taxReason field

66160 Missing cardExpiryDate field

66161 Missing cardStartDate field

Invalid Request Field Error Codes: 66304 - 66559

Code Description

66304 Invalid request

66305 Invalid merchantID field

66306 Reserved for future use. Contact customer support if this error occurs

164

Invalid Request Field Error Codes: 66304 - 66559

Code Description

66307 Reserved for internal use. Contact customer support if this error occurs

66308 Reserved for internal use. Contact customer support if this error occurs

66309 Reserved for internal use. Contact customer support if this error occurs

66310 Reserved for internal use. Contact customer support if this error occurs

66311 Invalid action field

66312 Invalid amount field

66313 Invalid currencyCode field

66314 Invalid cardNumber field

66315 Invalid cardExpiryMonth field

66316 Invalid cardExpiryYear field

66317 Invalid cardStartMonth field

66318 Invalid cardStartYear field

66319 Invalid cardIssueNumber field

66320 Invalid cardCVV field

66321 Invalid customerName field

66322 Invalid customerAddress field

66323 Invalid customerPostCode field

66324 Invalid customerEmail field

66325 Invalid customerPhone field

66326 Invalid countyCode field

66327 Invalid transactionUnique field (reserved for future use)

66328 Invalid orderRef field (reserved for future use)

66329 Invalid remoteAddress field

66330 Invalid redirectURL field

66331 Invalid callbackURL field (reserved for future use)

66332 Invalid merchantData field (reserved for future use)

66333 Invalid origin field (reserved for future use)

165

Invalid Request Field Error Codes: 66304 - 66559

Code Description

66334 Invalid duplicateDelay field. Refer to Section 14.

66335 Invalid itemQuantity field

66336 Invalid itemDescription field

66337 Invalid itemGrossValue field

66338 Invalid taxValue field

66339 Invalid discountValue field

66340 Invalid taxDiscountDescription field (reserved for future use)

66341 Invalid xref field

66342 Invalid type field

66343 Invalid signature field

66344 Invalid authorisationCode field

66345 Invalid transactionID field

66356 Invalid threeDSRequired field

66347 Invalid threeDSMD field

66348 Invalid threeDSPaRes field

66349 Invalid threeDSECI field

66350 Invalid threeDSCAVV field

66351 Invalid threeDSXID field

66352 Invalid threeDSEnrolled field

66353 Invalid threeDSAuthenticated field

66354 Invalid threeDSCheckPref field

66355 Invalid cv2CheckPref field

66356 Invalid addressCheckPref field

66357 Invalid postcodeCheckPref field

66358 Invalid captureDelay field.

66359 Invalid orderDate field

66360 Invalid grossAmount field

166

Invalid Request Field Error Codes: 66304 - 66559

Code Description

66361 Invalid netAmount field

66362 Invalid taxRate field

66363 Invalid taxReason field

66416 Invalid card expiry date. Must be a date sometime in the next 10 years

66417 Invalid card start date. Must be a date sometime in the last 10 years

167

A-2 AVS / CV2 Check Response Codes

The AVS/CV2 Check Response Message field avscv2ResponseMessage is sent back in the

raw form that is received from the Acquiring bank and can contain the following values:

Response Description

ALL MATCH AVS and CV2 match

SECURITY CODE MATCH ONLY CV2 match only

ADDRESS MATCH ONLY AVS match only

NO DATA MATCHES No matches for AVS and CV2

DATA NOT CHECKED Supplied data not checked

SECURITY CHECKS NOT SUPPORTED Card scheme does not support checks

168

The AVS/CV2 Response Code avscv2ResponseCode is made up of six characters and is sent

back in the raw form that is received from the Acquiring bank. The first 4 characters can be
decoded as below, the remaining 2 characters are currently reserved for future use:

Position 1 Value Description

0 No Additional information available.

1 CV2 not checked

2 CV2 matched.

4 CV2 not matched

8 Reserved

Position 2 Value Description

0 No Additional information available.

1 Postcode not checked

2 Postcode matched.

4 Postcode not matched

8 Postcode partially matched

Position 3 Value Description

0 No Additional Information

1 Address numeric not checked

2 Address numeric matched

4 Address numeric not matched

8 Address numeric partially matched

Position 4 Value Description

0 Authorising entity not known

1 Authorising entity – merchant host

2 Authorising entity – acquirer host

4 Authorising entity – card scheme

8 Authorising entity – issuer

169

A-3 3-D Secure Enrolment/Authentication Codes

The 3-D Secure enrolment check field threeDSEnrolled can return the following values:

Y - Enrolled: The card is enrolled in the 3-D Secure program and the payer is eligible for authentication processing.

N - Not Enrolled: The checked card is eligible for the 3-D Secure (it is within the card association’s range of accepted

cards) but the card issuing bank does not participate in the 3-D Secure program. If the Cardholder later
disputes the purchase, the issuer may not submit a chargeback to you.

U - Unable To Verify Enrolment: The card associations were unable to verify whether the Cardholder is registered.

As the card is ineligible for 3-D Secure, Merchants can choose to accept the card nonetheless and precede
the purchase as non-authenticated and submits authorisation with ECI 7. The Acquirer/Merchant retains
liability if the Cardholder later disputes making the purchase.

E - Error Verify Enrolment: The Gateway encountered an error. This card is flagged as 3-D Secure ineligible. The

card can be accepted for payment, yet you may not claim a liability shift on this transaction in case of a
dispute with the Cardholder.

The 3-D Secure authentication check field threeDSAuthenticated can return the following

values:

Y - Authentication Successful: The Issuer has authenticated the Cardholder by verifying the identity information or

password. A CAVV and an ECI of 5 is returned. The card is accepted for payment.

N - Not Authenticated: The Cardholder did not complete authentication and the card should not be accepted for

payment.

U - Unable To Authenticate: The authentication was not completed due to technical or another problem. A

transmission error prevented authentication from completing. The card should be accepted for payment, but
no authentication data will be passed on to authorisation processing and no liability shift will occur.

A - Attempted Authentication: A proof of authentication attempt was generated. The Cardholder is not participating,

but the attempt to authenticate was recorded. The card should be accepted for payment and authentication
information passed to authorisation processing.

E - Error Checking Authentication: The Gateway encountered an error. The card should be accepted for payment,

but no authentication information will be passed to authorisation processing and no liability shift will occur.

170

A-4 3-D Secure Enrolment/Authentication Only

Usually the Gateway will perform most of the 3-D Secure processing in the background leaving the
only the actual contacting of the issuers Access Control Server (ACS) to the Merchant.

However, there may be times when you may wish to gain more control over the Enrolment and
Authentication process. The following field allows the request processing to stop after the 3-D
Secure enrolment check or authentication check and return:

Field Name Mandatory? Description

threeDSOnly No

Complete the processing as far as the next 3-D
Secure stage and then return with the appropriate
response fields for that stage.

As this stop is requested then a responseCode is returned as 0 (Success) however it will be

recorded in the Merchant Management System (MMS) as 65792 (3DS IN PROGRESS) indicating
that the transaction has been prematurely halted expecting it to be continued to the next 3-D
Secure stage when required. In order to continue the process, the threeDSRef field is returned

together with any relevant 3-D Secure response fields suitable for that stage in the processing.

If this flag is used when 3-D Secure is not enabled on the account or after the 3-D Secure process
has been completed for the request (i.e. when the authentication step has completed), then
passing the flag will cause the transaction to abort with a responseCode of 65795 (3DS

PROCESSING NOT REQUIRED). This ensures that the transaction doesn’t go on to completion
by accident while trying do 3-D Secure enrolment or authentication only.

3-D Secure Enrolment/Authentication Only is supported by the Direct Integration only.

171

A-5 Request Checking Only

Sometimes, you may wish to submit a request to the Gateway in order for it to be ‘validated only’
and not processed or sent to the Acquirer. In these cases, the following flag can be used that will
stop the processing after the integrity verification has been performed:

Field Name Mandatory? Description

checkOnly No

Check the request for syntax and field value errors
only. Do not attempt to submit the transaction for
honouring by the Merchant’s financial institution.

If the request is OK, then a responseCode is returned as 0 (Success); otherwise the code that

would have prevented the request from completing is returned.

Note: in these cases, the request is not stored by the Gateway and is not available within the
Merchant Management System (MMS).

172

A-6 Merchant Account Mapping

Merchant Accounts can be grouped together so that if a transaction is sent to an account that
doesn't support either the requested card type or currency, then it can be automatically routed to
another account in the same group that does support them.

For example, you can group a Merchant Account that only supports American Express cards with
a Merchant Account that only supports Visa cards. Then, if a request using an American Express
card is sent to the Visa only Merchant Account, the Gateway will automatically route it to the
American Express Merchant Account.

This prevents you from needing to know the card type in advance in order to send the request to
the correct Merchant Account. This is important when using the Hosted integration, because you
don’t know the card type at the time you send the request.

It is usual for you to have one master account to which you direct all requests and then group all
your accounts together.

Any Gateway routing of the transaction can be seen from the following additional response fields:

Field Name Returned? Description

requestMerchantID Always ID of Merchant Account request was sent to (usually
same as merchantID).

processMerchantID Always ID of Merchant Account request was processed by.

173

A-7 Velocity Control System (VCS)

The Gateway allows you to configure velocity controls using the Merchant Management System
(MMS). These can be used to email you declined transactions automatically, where they exceed
these controls.

For example, you can set up a control that stops a certain card number from being used more than
twice in the space of a few minutes.

If one or more of these controls are broken by a transaction, then the following response fields will
show the problem.

If a transaction is declined through breach of one or more of these rules, then a responseCode of
5 (VCS DECLINE) will be returned.

Field Name Returned? Description

vcsResponseCode Always VCS error code. Normally 5.
Refer to appendix A-1 for details.

vcsResponseMessage Always Description of above response code or list of rules
broken by this transaction.

174

A-8 Capture Delay

Capture Delay enables you to specify a delay between the authorisation of a payment and its
capture. This allows you time to verify the order and choose whether to fulfil it or cancel it. This
can be very helpful in preventing chargebacks due to fraud.

When NOT using capture delay, payments are authorised and captured immediately - funds are
automatically debited from the Customer’s credit or debit card at that time.

When using capture delay, the payment is authorised only at the time of payment - funds are
reserved against the credit or debit card and will not be debited until the payment is captured; or
not at all if you cancel.

The Customer experience with capture delay is exactly the same as when capture delay is not
used. The Customer will not know whether you are using capture delay or not.

If you choose to use capture delay, you specify the number of days for which capture is delayed,
within a range of 0 - 30 days. Payments will automatically be captured after that delay unless you
manually cancel the transaction (either using the Hosted Integration or via the Merchant
Management System (MMS)). (Note that some cards require capture within 4-5 days - if payment
is not automatically captured within that 4-5 day period, the transaction will expire and the
reserved funds will be released to the Customer.)

Why Use Capture Delay?

Capture delay allows you to accept online orders normally but allows you to cancel any
transactions that you cannot or will not fulfil, thereby reducing the risks of chargeback. If you
receive an order that appears to be fraudulent or that you cannot or do not wish to fulfil, you can
simply cancel the transaction.

Note: Cancelling a transaction will not reverse the authorisation and will not release the funds back
to the Customer. The authorisation will be left to expire and release reserved funds. The time
taken for this varies between cards.

Some Acquirers do not support delayed capture, in which case the Hosted Integration will return a
responseCode of 66358 (INVALID CAPTURE DELAY).

175

A-9 Types of card

The following is a list of primary card types supported by the Gateway.

Card Code Card Type

MC Mastercard Credit

MD Mastercard Debit

MA Mastercard International Maestro

MI Mastercard/Diners Club

MP Mastercard Purchasing

MU Mastercard Domestic Maestro (UK)

VC Visa Credit

VD Visa Debt

EL Visa Electron

VA Visa ATM

VP Visa Purchasing

AM American Express

JC JCB

CU China UnionPay (generic)

CC China UnionPay Credit

CD China UnionPay Debit

The Gateway primarily supports Mastercard, Visa and American Express branded cards. Some
Acquirers may support JCB cards. Not all Acquirers support all types.

Where cards are provided by a single card scheme, then the primary card code is also used as a
code to identify the card scheme (referred to as the cardSchemeCode in the transaction

response). For example, cards issued by VISA will use the code ‘VC’; cards issued by Mastercard
will use the code ‘MC’; and so on. China UnionPay credit ‘CC’ and debit ‘CD’ will use the scheme
code ‘CU’.

176

The following is a list of secondary card types recognised by the Gateway.

Card Code Card Type

CF Clydesdale Financial Services

BC BankCard

DK Dankort

DS Discover

DI Diners Club

DE Diners Club Enroute

DC Diners Club Carte Blanche

FC FlexCache

LS Laser

SO Solo

ST Style

SW Switch

TP Tempo Payments

IP InstaPayment

XX Unknown/unrecognised card type

These cards may be returned in response to a card lookup, but they are either deprecated or most
likely not supported by any current Acquirer.

177

A-10 Integration Testing

You can perform test transactions using one of the test Merchant IDs below and using test card
details.

For non 3-D Secure testing use Merchant ID 100001
For 3-D Secure Testing use Merchant ID 100856

Test Merchant Accounts are not connected to an Acquirer and for that reason simulate their
response, depending on the request amount, as follows:

Amount range from Amount range to Expected authorisation response Expected settlement outcome

100 (£1.00) 2499 (£24.99) AUTH CODE: XXXXXX ACCEPTED

2500 (£25.00) 4999 (£49.99) AUTH CODE: XXXXXX REJECTED

5000 (£50.00) 9999 (£99.99) CARD REFERRED N/A

10000 (£100.00) 14999 (£149.99) CARD DECLINED N/A

15000+ (£150.00+) CARD DECLINED – KEEP CARD N/A

A-10.1 Test Card Details

DO NOT USE THESE TEST CARDS ON LIVE MERCHANT ACCOUNTS. THEY ARE FOR TEST
PURPOSES ONLY.

The expiry date used for each test card should be December of the current year, in two-digit
format – e.g. 12/15 for December 2015

A-10.1.1 Visa Credit

Card Number CVV Address

4929421234600821 356

Flat 6
Primrose Rise

347 Lavender Road
Northampton
NN17 8YG

4543059999999982 110
76 Roseby Avenue

Manchester
M63X 7TH

4543059999999990 689

23 Rogerham
Mansions

4578 Ermine Street
Borehamwood

WD54 8TH

178

A-10.1.2 Visa Debit

Card Number CVV Address

4539791001730106 289

Unit 5
Pickwick Walk

120 Uxbridge Road
Hatch End
Middlesex
HA6 7HJ

4462000000000003 672
Mews 57

Ladybird Drive
Denmark 65890

A-10.1.3 Mastercard Credit

Card Number CVV Address

5301250070000191 419

25 The Larches
Narborough

Leicester
LE10 2RT

5413339000001000 304

Pear Tree Cottage
The Green

Milton Keynes
MK11 7UY

5434849999999951 470

34a Rubbery Close
Cloisters Run

Rugby
CV21 8JT

5434849999999993 557
4-7 The Hay Market

Grantham
NG32 4HG

A-10.1.4 Mastercard Debit

Card Number CVV Address

5573 4712 3456 7898 159
Merevale Avenue

Leicester
LE10 2BU

179

UK Maestro

Card Number CVV Address

6759 0150 5012 3445 002 309

The Parkway
5258 Larches Approach

Hull
North Humberside

HU10 5OP

6759 0168 0000 0120 097 701

The Manor
Wolvey Road

Middlesex
TW7 9FF

JCB

Card Number CVV Address

3540599999991047 209

2 Middle Wallop
Merideth-in-the-Wolds

Lincolnshire
LN2 8HG

Electron

Card Number CVV Address

4917480000000008 009
5-6 Ross Avenue

Birmingham
B67 8UJ

American Express

Card Number CVV Address

374245455400001 4887
The Hunts Way
Southampton
SO18 1GW

Diners Club

Card Number CVV Number

36432685260294 111

Diners Club do not support AVS. For testing purposes use a separate MID with AVS turned off.

180

Visa Test Cards

Card Number CVV Address Postcode Amount Test Scenario

4909630000000008 £12.01 Card range not participating

4012010000000000009 £12.02
Card registered with VbV

(automated ACS response –
click on Submit button)

4012001037141112 083 16 155 £12.03
Card registered with Visa

(automated ACS response –
click on Submit button)

4012001037484447 450 200 19 £12.04
Failed authentication – issuer

database unavailable

4015501150000216 £12.05
Attempts processing

(automated ACS response –
click on Submit button)

181

Mastercard Test Cards

Note: These test cards are controlled by Mastercard and won't always act as expected. The 3-D
Secure passwords can be changed by anyone during the 3-D Secure testing, which means that
the password won’t then work for the next person. The standard fall-back password is dog33cat.
Use Visa's 3-D Secure test cards if these below are not behaving as expected.

Card Number CVV Address Postcode Amount Test Scenario

503396198900000818 332 31 18 £11.01

Enrolled International Maestro
account number – valid
SecureCode (multiple

cardholder).
Select ‘MEGAN SANDERS’
with SecureCode password:

secmegan1

5453010000070789 508 20 52 £11.02

Enrolled account number -
valid SecureCode (single)
SecureCode password:

sechal1

5453010000070151 972 22 08 £11.03

Enrolled account number –
mixed SecureCode (multi)

SecureCode password:
Hannah – sechannah1 (bad)

Haley – sechaley1 (good)

5453010000070284 305 35 232 £11.04

Enrolled account number –
invalid SecureCode

Invalid SecureCode password:
invseccode

5453010000084103 470 73 170 £11.05 Attempts processing

5453010000070888 233 1 248 £11.06 Account number not enrolled

5199992312641465 006 21 14 £11.07 Card range not participating

182

A-10.2 PayPal Sandbox Accounts

PayPal testing is available on the standard 100001 test Merchant account. However, you may
wish to contact customer support to have your own PayPal test Merchant account created that
connects to your own PayPal sandbox account, thus enabling you to view the transactions as they
are sent to PayPal.

A-10.3 Amazon Pay Sandbox Accounts

Amazon Pay testing is available on the standard 100001 test Merchant account. However, you
may wish to contact customer support to have your own Amazon Pay test Merchant account
created that connects to your own Amazon Pay sandbox account, thus enabling you to view the
transactions as they are sent to Amazon Pay.

183

A-11 Sample Signature Calculation

It is required that transactions are protected using message signing. The signing process offers a
quick and simple way to ensure that the message came from an authorised source and has not

been tampered with during transmission.

Signing, however, must be completed on your servers and never left for the Customer’s browser to
complete in JavaScript, as this would mean revealing your secret signature code to anyone who
viewed the JavaScript code in the browser.

Signatures are especially important when a transaction is sent from a browser’s payment form via
the use of hidden form fields, because the Customer can easily use tools built into their browser to
modify these hidden fields and change items such as the amount they should be charged.

The section below gives a step by step example of how to sign a transaction, complete with coding
examples using the PHP language.

Example Signature Key:

$key = 'DontTellAnyone'

Example Transaction:

$tran = array (

 'merchantID' => '100001',

 'action' => 'SALE',

 'type' => '1',

 'currencyCode' => '826',

 'countryCode' => '826',

 'amount' => '2691',

 'transactionUnique' => '55f025addd3c2',

 'orderRef' => 'Signature Test',

 'cardNumber' => '4929 4212 3460 0821',

 'cardExpiryDate' => '1213',

)

The transaction used for signature calculation must not include any 'signature' field as this

will be added after signing when its value is known.

184

Step 1 - Sort transaction values by their field name

Transaction fields must be in ascending field name order according to their numeric ASCII value.

ksort($tran);

array ('action' => 'SALE', 'amount' => '2691', 'cardExpiryDate' => '1213',

'cardNumber' => '4929 4212 3460 0821', 'countryCode' => '826', 'currencyCode' => '826',

'merchantID' => '100001', 'orderRef' => 'Signature Test', 'transactionUnique' =>

'55f025addd3c2', 'type' => '1')

Step 2 - Create url encoded string from sorted fields

Use RFC 1738 and the application/x-www-form-urlencoded media type, which implies that spaces are encoded as plus (+) signs.

$str = http_build_query($tran, '', '&');

action=SALE&amount=2691&cardExpiryDate=1213&cardNumber=4929+4212+3460+0821&countryCode=

826¤cyCode=826&merchantID=100001&orderRef=Signature+Test&transactionUnique=55f025

addd3c2&type=1

Step 3 - Normalise all line endings in the url encoded string

Convert all CR NL, NL CR, CR character sequences to a single NL character.

$str = str_replace(array('%0D%0A', '%0A%0D', '%0D'), '%0A', $str);

action=SALE&amount=2691&cardExpiryDate=1213&cardNumber=4929+4212+3460+0821&countryCode=

826¤cyCode=826&merchantID=100001&orderRef=Signature+Test&transactionUnique=55f025

addd3c2&type=1

Step 4 - Append your signature key to the normalised string

The signature key is appended to the normalised string with no separator characters.

$str .= 'DontTellAnyone'

action=SALE&amount=2691&cardExpiryDate=1213&cardNumber=4929+4212+3460+0821&countryCode=

826¤cyCode=826&merchantID=100001&orderRef=Signature+Test&transactionUnique=55f025

addd3c2&type=1DontTellAnyone

Step 5 - Hash the string using the SHA-512 algorithm

The normalised string is hashed to a more compact value using the secure SHA-512 hashing algorithm1.

$signature = hash('SHA512', $str);

da0acd2c404945365d0e7ae74ad32d57c561e9b942f6bdb7e3dda49a08fcddf74fe6af6b23b8481b8dc8895

c12fc21c72c69d60f137fdf574720363e33d94097

Step 6 - Add the signature to the transaction form or post data

The signature should be sent as part of the transaction in a field called 'signature'.

<input type="hidden" name="signature" value="<?=$signature?>">

or
$tran['signature'] = $signature;

185

A-12 Transaction Life cycle

Each transaction received by the Gateway follows a pre-determined life cycle from receipt to
completion. The stages in the life cycle are determined by the type of transaction and its success
or failure at different stages in its life.

A-12.1 Authorise, Capture and Settlement

The key stages in the transaction’s life cycle can be grouped into the Authorisation, Capture and
Settlement stages as follows:

A-12.1.1 Authorisation

An authorisation places a hold on the transaction amount in the Cardholder’s issuing bank. No
money changes hands yet. For example, let’s say that you are going to ship a physical product
from your website. First, you authorise the amount of the transaction; then you ship the product.
You only capture the transaction after the product is shipped.

A-12.1.2 Capture

A capture essentially marks a transaction as ready for settlement. As soon as the product is
shipped, you can capture an amount up to the amount of the authorisation. Usually, the full
amount is captured. An example of a situation in which the whole amount is not captured is where
the Customer ordered multiple items and one of them is unavailable.

The Gateway will normally automatically capture all authorisations as soon as they are approved,
freeing up you from having to do this.

However, it is usually more desirable to delay the capture either for a period of time or indefinitely.
The captureDelay field can be used for this purpose and will allow you to state the number of

days to delay any automatic capture or never to automatically capture. For more details on
delayed capture, refer to appendix A-8.

A-12.1.3 Settlement

Within 24 hours, the Gateway will instruct your Acquirer to settle the captured transaction. The
Acquirer then transfers the funds between the Cardholder’s and your accounts.

186

A-12.2 Transaction States

At any time during the transaction’s life cycle, it is in one of a number of states as follows:

A-12.2.1 Received

The transaction has been received by the Gateway and stored away. This is the first stage. The
Gateway will examine the transaction and pass it on to the next stage, as appropriate.

A-12.2.2 Approved

The transaction has been sent to the Acquirer for authorisation and the Acquirer has approved it
and is holding the Cardholder’s funds.

This is an intermediate state and follows the received state.

A-12.2.3 Verified

The transaction has been sent to the Acquirer for verification and the Acquirer has confirmed that
the account is valid.

This is a terminal state and follows the received state. The transaction will never be settled and no
funds will ever be transferred

A-12.2.4 Declined

The transaction has been sent to the Acquirer for authorisation and the Acquirer declined it.
The Acquirer will not usually give any reason for a decline and will not have held any funds.

The transaction has now completed its life cycle and no more processing will be done on it.

This is a terminal state and follows the received state. The transaction will never be settled and no
funds will ever be transferred. The transaction responseCode will be 5 (Declined).

A-12.2.5 Referred

The transaction has been sent to the Acquirer for authorisation and the Acquirer referred it for
verbal approval.

You can choose not to seek verbal approval and treat these transactions the same as a normal
‘declined’ authorisation.

To seek verbal approval, you must phone the Acquirer and ask for an authorisation code. They will
probably ask for more information about the transaction and might require you to gather other
forms of identification from the Cardholder. If an authorisation code is provided, then a new
transaction can be sent to the Gateway specifying the xref of this transaction and the received
authorisactionCode. This new request will not be sent for authorisation and will be in the
‘approved’ state ready for capture and settlement.

187

This is a terminal state and follows the received state. The transaction will never be settled and no
funds will ever be transferred. The transaction responseCode will be 2 (Referred).

A-12.2.6 Reversed

The transaction was sent to the Acquirer for authorisation and the Acquirer approved it. However,
the transaction has been voided and the approval reversed. The Acquirer will have been asked to
reverse any approval previously received, effectively cancelling the authorisation and returning
any held funds back to the Cardholder.

The gateway will reverse an authorisation if it declines the transaction post authorisation due to
any AVS/CV checking. The PREAUTH action will also automatically reverse an authorisation
before return.

This is a terminal state and follows the approved state. The transaction will never be settled and
no funds will ever be transferred.

If the transaction was reversed due to AVS/CV2 checking, then the transaction responseCode
will be 5 (AVS/CV2 Declined).

A-12.2.7 Captured

The transaction has been captured and the Acquirer will be asked to capture the approved held
funds when the settling process next runs. The settling process usually runs each evening but the
Acquirer may take up to 3 days to transfer the funds.

The capture state can either be entered automatically if the transaction requested an immediate
or delayed capture; or it can be manually requested by sending a CAPTURE request. You are free
to change the amount to be captured to a value less than that initially approved by issuing one or
more CAPTURE commands. When captured, there is no way to un-capture a transaction. If not
explicitly cancelled, it will be sent for settlement at the next opportunity.

This is an intermediate state and follows the approved state.

A-12.2.8 Tendered

The transaction has been sent to the Acquirer for settlement by the settling process and is
awaiting confirmation that it has been accepted.

At this point, the transaction can no longer be cancelled or re-captured.

This is an intermediate state and follows the captured state.

A-12.2.9 Deferred

The transaction could not be settled due to some temporary problem such as a communications
loss. It will be attempted again the next time the settling process runs – usually first thing the next
day.

This is an intermediate state and follows the tendered state. It will normally be accompanied by a
transaction response that indicates why the settlement process could not settle the transaction.

188

A-12.2.10 Accepted

The transaction has been accepted for settlement by the Acquirer. The held funds will be
transferred between the Merchant and Cardholder in due course.

The transaction has now completed its life cycle and no more processing will be done on it, unless
it is subject to a rejection while the Acquirer is settling it.

This is a terminal state and follows the tendered state.

A-12.2.11 Rejected

The transaction has been rejected for settlement by the Acquirer. The held funds will not be
transferred between the Merchant and Cardholder.

Only a few Acquirers inform the Gateway that they have rejected a transaction: they usually inform
you directly. Therefore, a transaction may show as accepted even if was ultimately rejected or it
may change from accepted to rejected if the Acquirer does inform the Gateway.

The transaction has now completed its life cycle and no more processing will be done on it.

This is a terminal state and follows the tendered or accepted states. The transaction response
will normally indicate the reason the transaction was rejected.

A-12.2.12 Canceled

The transaction has been cancelled by the Merchant by sending a cancellation request to the
Gateway either using the CANCEL action or via the Merchant Management System (MMS).

You can cancel any transaction that is not in a terminal state or in the ‘tendered’ state. When
cancelled, any further processing that would have normally taken place will be halted. Cancelling
a transaction may or may not release any funds held on the Cardholder’s card, depending on
support from the Acquirer and card scheme. Note: the state is spelt American style, with a single ‘l’
as canceled.

This is a terminal state and follows any non-terminal state that occurs before the transaction
reaches the tendered state.

A-12.2.13 Finished

The transaction has finished and reached the end of its lifespan but did not reached one of the
other terminal states. Usually this indicates that a problem has occurred with the transaction that
prevents it continuing with its normal life cycle.

This is a terminal state and can follow any other state. The transaction response will normally
indicate the reason that the transaction failed.

189

A-13 Transaction types

The Gateway only supports card not present (CNP) types of transactions, made where the
Cardholder does not or cannot physically present the card for a your visual examination at the time
that an order is placed and payment effected.

The type of transaction required is specified using the type request field when performing a new
payment transaction.

A-13.1 E-commerce (ECOM)

E-commerce transactions are supported by the Gateway by using a transaction type of 1. They
are designed for you to accept payments via a website, such as a shopping cart payment. E-
commerce transactions can use advance fraud detection, such as 3-D Secure.

In accordance with Mastercard stipulations, the Gateway will not allow Maestro cards to be used
for new e-commerce transactions without the use of 3-D Secure.

A-13.2 Mail Order/Telephone Order (MOTO)

Mail Order/Telephone Order transactions are supported by the Gateway by using a transaction
type of 2. They are designed for you to build your own virtual terminal system to enter remote
order details. You will need to ensure when processing such transactions, that your Acquirer
understands that the transaction is a MOTO transaction. This is because your Acquirer will have
different requirements in order to classify a transaction as secure: e.g. 3-D Secure is often
required for internet transactions, but impossible for MOTO transactions.

A-13.3 Continuous Authority (CA)

Continuous Authority transactions are supported by the Gateway by using a transaction type of 9.
They are designed for you to make subscription transactions. For further details on how to use
Continuous Authority transactions, please refer to appendix A-15.2.

The Gateway offers a means of automating the taking of regular CA transactions using Recurring
Transaction Agreements (RTA) as detailed in section 13.

190

A-14 Payment Tokenisation

All new transactions stored by the gateway are assigned a unique reference number that is
referred to as the cross reference and returned in the xref response field. This cross reference is
displayed on the Merchant Management System (MMS) and used whenever a reference to a
previous transaction is required.

The cross reference can be sent as part of a transaction request, in the xref request field, to tell
the Gateway to perform an action on an existing transaction. This is usually for management
actions such as CANCEL or CAPTURE.

The cross reference can also be sent with new transactions such as PREAUTH, SALE, and
REFUND actions, to request that the Gateway uses the values from the existing transaction if they
have not been specified in the new request. For more information on how the existing values are
used, please refer to appendix A-16. This allows an existing transaction to be effectively repeated
without your needing to know the original card number. The only exception to this is the card’s
security code (CVV) which the Gateway cannot store, due to PCI DSS restrictions. Accordingly, it
will have to be supplied in the new request (unless the new request is a Continuous Authority
transaction, refer to appendix A-13.3).

The use of cross references to perform repeat transactions is referred to as Payment Tokenisation
and should not be confused with Card Tokenisation which is a separate service offered by the
Gateway.

Refer to section 13 for details on how to instruct the Gateway to repeat a payment automatically.

The way each action handles any supplied xref is as follows:

A-14.1 PREAUTH, SALE, REFUND, VERIFY requests

These requests will always create a new transaction.

The xref field can be provided to reference an existing transaction, which will be used to

complete any missing fields in the current transaction. The previous transaction will not be
modified. For more information on how the existing values are used, please refer to appendix A-
16. If the existing transaction cannot be found, then an error will be returned and recorded against
the new transaction

The request is expected to contain any transaction information required.

The xref will only be used to complete any missing card and order details, relieving you from

having to store card details and reducing your PCI requirements.

191

A-14.2 REFUND_SALE requests

These requests will always create a new transaction.

The xref field can be provided to reference an existing transaction that is going to be refunded.

This existing transaction will be marked as have been fully or partially refunded and the amounts
will be tallied to ensure that you cannot refund more than the original amount of this existing
transaction. If the existing transaction cannot be found, then an error will be returned and recorded
against the new transaction.

The request is expected to contain any transaction information required.

The xref will not only be used to find the transaction to be refunded: additionally, that transaction

will be used to complete any missing card and order details, relieving you from having to store
card details and reducing your PCI requirements.

A-14.3 CANCEL or CAPTURE requests

These requests will always modify an existing transaction.

The xref field must be provided to reference an existing transaction, which will be modified to the

desired state. If the existing transaction cannot be found, then an error is returned but no record of
the error will be recorded against any transaction.

The request must not contain any new transaction information any attempt to send any new
transaction information will result in an error. The exception is that a CAPTURE request can send
in a new lesser amount field when a lesser amount, than originally authorised, must be settled.

A-14.4 QUERY requests

These requests will not create or modify any transaction.

The xref field must be provided to reference an existing transaction, which will be returned as if it

had just been performed. If the existing transaction cannot be found, then an error is returned but
no record of the error will be recorded against any transaction.

The request must not contain any new transaction information and any attempt to send any new
transaction information will result in an error.

192

A-14.5 SALE or REFUND Referred Authorisation requests

These will always create a new transaction.

The xref field must be provided to reference an existing transaction, which must be of the same

request type and be in the referred state. A new transaction will be created based upon this
transaction. If the existing transaction cannot be found or is not in the referred state, then an error
will be returned and recorded against the new transaction.

The new transaction will be put in the approved state and captured when specified by the existing
or new transaction details. It will not be sent for authorisation again first.

The request may contain new transaction details, but any card details or order amount must be the
same as the existing transaction. Any attempt to send different card details or order details will
result in an error.

NB: This usage is very similar to a normal SALE or REFUND request sent with an
authorisationCode included. The difference is that the xref must refer to an existing referred

transaction whose full details are used if required and not simply an existing transaction whose
card details are used if required.

This means it is not possible to create a pre-authorised SALE or REFUND request and use a
xref (i.e. to use the card and order details from an existing transaction). As a soon as the xref

field is seen, the Gateway identifies that it is a referred transaction that you wish to authorise.

193

A-15 Repeat Transactions

The Gateway supports two main types of repeat transactions and the option for the Gateway to
take the repeat transactions automatically on behalf of the Merchant.

Repeat transactions take advantage of the Payment Tokenisation feature of the Gateway as
described in appendix A-14, where each transaction is assigned a unique cross reference and
allows the details from a previous transaction to be used in a later transaction.

Refer to section 13 for information on how the Gateway can be instructed to take repeat payments
automatically, according to a pre-determined schedule.

A-15.1 MOTO Transactions

A Mail Order/Telephone Order (MOTO) repeat transaction, is where the Merchant makes a repeat
transaction using card details that have been captured as part of a previous transaction without
the Cardholder giving permission to continue to take money from their debit or credit card.

Merchants who use this system to implement billing or subscription type payments are
encouraged to use the Continuous Payment Agreement method, as described in section A-15.2,
to comply with Card Payment Scheme practices. Your Acquirer may refuse to accept the repeat
transactions if they are not subject to an agreement between yourself and your Customer.

.

A-15.1.1 Initial Transaction

The initial transaction can be any transaction that has successfully stored valid credit card details
and returned a xref response field. The transaction does not have to have resulted in a
successful authorisation but would normally be a successful VERIFY, PREAUTH or SALE request.

A-15.1.2 Repeat Transaction

The repeat transaction would send the xref returned by the initial transaction (or previous repeat
transaction) as the xref request field. This transaction should use a type of 2 (MOTO) indicating
that it is a Merchant initiated transaction.

The repeat transaction would be a clone of the cross referenced transaction, including any
payment details with the exception of any new data provided in the repeat transaction. The
cloneFields request field can also be used to control which fields in the cross referenced
transaction are used in the repeat transaction (refer to appendix A-16).

Because the card CVV number is never stored, repeat transactions will either require the
Cardholder to re-enter their CVV or the transaction must be performed with no CVV. In such
cases, the Gateway will automatically suppress CVV checking. However, some Acquirers will not
allow transactions to be performed with no CVV.

194

A-15.2 Continuous Payment Agreements

A Continuous Payment Authority (CPA), which is sometimes referred to as a recurring payment or
a ‘continuous payment transaction’, is where the Cardholder gives a Merchant permission to take
money regularly from their debit or credit card, whenever they consider that they are owed money.
Often, payday loan companies, online DVD rental subscriptions, magazine subscriptions and gym
memberships use this method of payment.

A-15.2.1 Initial Transaction

The initial transaction must be any successful VERIFY, PREAUTH or SALE request. If no payment
is required at the same time, then a Merchant must use a VERIFY request.

The initial transaction must be subject to the highest level of authentication supported. This
therefore means that eCommerce transactions must use 3-D Secure when available.

In order to indicate that the initial transaction is the first in a Continuous Payment Authority, then
the type of agreement between the Merchant and the Cardholder must be specified, using the
rtAgreementType field.

The rtAgreementType can be one of the following values:

• recurring – this is used when each recurring payment may be for a variable or fixed amount
and the agreement shall not have a specified end date.

• instalment – this is used when each recurring payment may be for a variable or fixed amount
but the total of all the recurring payments will be for a fixed amount that shall be specified in
the agreement with the Cardholder. Therefore, the agreement has a specified end date and
the total amount to be paid is known.

A-15.2.2 Repeat Transaction

The repeat transaction would send the xref returned by the initial transaction (or previous repeat
transaction) as the xref request field. This transaction must use a type of 9 (CA) indicating that it
is a Continuous Authority transaction.

The repeat transaction would be a clone of the cross referenced transaction, including any
payment details with the exception of any new data provided in the repeat transaction. The
cloneFields request field can also be used to control which fields in the cross referenced
transaction are used in the repeat transaction (refer to appendix A-16).

Because the card CVV number is never stored, repeat transactions will not require a card CVV to
be supplied.

Acquirers may insist that a separate acquiring account must be used for any Continuous Authority
payment, in which case this would be associated with a different Merchant Account. In such
cases, the initial transaction would be performed against your normal Merchant Account and the
repeat transactions would be performed against your Continuous Authority Merchant Account.

It is the responsibility of the Merchant to regulate the transaction values and frequencies. Please
be aware that as a rule of thumb, the banks expect Continuous Authority payments to be a
predictable transaction amount on a regular or predictable frequency. Any deviation from this can
be viewed as an abuse of the Merchant’s Continuous Authority acquiring account. You must also

195

only ever process a Continuous Authority transaction on a card for which you have obtained full
authorisation and authentication via your normal Merchant Account.

Mastercard stipulates that the Gateway will not allow Maestro cards to be used with Continuous
Authority transactions.

196

A-16 Transaction Cloning

If a new transaction request is received with the Cross Reference (xref) of an existing transaction,
then the values of certain fields in the existing transaction will be used to initialise the new
transaction where new values have not been provided in the new request. This copying of fields
from a base transaction is termed ‘transaction cloning’, and the copied-over value is termed the
‘cloned value’.

Appendix A-16.1 shows all the fields whose values can be copied over from the existing
transaction. To allow for easy addition of future fields, the fields are grouped into logical groupings
and each group is given a name (as show in brackets after the group title).

Certain groups of fields, such as address fields, can only be copied as a whole entity and any new
value provided in the new request will prevent the whole group from being copied from the existing
transaction. Please note that line item data (items) cannot be merged.

By default, the values of all the fields listed in appendix A-16.1 are copied from the existing
transaction where appropriate. However, you can control exactly which fields are copied using the
cloneFields field in the new request. The value of cloneFields should be a comma separated list
of field names or group names that should be copied over. Alternatively, if you wish to specify a list
of fields not to copy, then prefix the list with a single exclamation mark (!).

Field Name Mandatory? Description

cloneFields N Comma separated list of field names or group names
whose values should be cloned.

Examples

To copy over only the value of customerName and any values for the fields in the
customerAddressFields group:

cloneFields=”customerName, customerAddressFields”

To copy over the values of all supported fields apart from the value of customerName and
merchantName:

cloneFields=”!customerName,merchantName”

197

A-16.1 Cloned Fields

Transaction fields currently cloned are as follows:

• Order Details Fields (orderFields)
o type
o countryCode
o currencyCode
o amount
o grossAmount
o netAmount
o taxRate
o taxAmount
o taxReason
o discountAmount
o discountReason
o handlingAmount
o insuranceAmount

• Order Reference Fields (orderRefFields)
o transactionUnique
o orderRef
o orderDate

• Card Fields (cardFields)
o paymentMethod
o cardToken
o cardNumber
o cardExpiryDate
o cardExpiryMonth
o cardExpiryYear
o cardStartDate
o cardStartMonth
o cardStartYear
o cardIssueNumber

• Cardholder Fields (cardholderFields)
o customerName
o customerAddress
o customerPostcode
o customerEmail
o customerPhone

• Purchase Fields (purchaseFields)
o Items

• Statement Narrative Fields (narrativeFields)
o statementNarrative1
o statementNarrative2

198

• 3D Secure Fields (threedsFields)1
o threeDSRequired
o threeDSCheckRef

• AVS/CV2 Fields (avscv2Fields)
o avscv2Required
o cv2CheckPref
o addressCheckPref
o postcodeCheckPref
o customerAddress
o customerPostcode

• Merchant Email Notification Fields (notifyFields)
o notifyEmailRequired
o notifyEmail

• Customer Receipt Fields (cReceiptFields)
o customerReceiptRequired
o customerEmail

• Merchant Information Fields (merchantFields)
o merchantName
o merchantCompany
o merchantAddress*
o merchantTown*
o merchantCounty*
o merchantPostcode*
o merchantCountryCode*
o merchantPhone
o merchantMobile
o merchantFax
o merchantEmail
o merchantWebsite
o merchantData
o merchantOrderRef
o merchantCustomerRef
o merchantTaxRef
o merchantOriginalOrderRef
o merchantCategoryCode
o merchantType

Customer Information Fields (customerFields)

o customerName
o customerCompany
o customerAddress*
o customerTown*
o customerCounty*
o customerPostcode*
o customerCountryCode*

1 3D Secure fields are only cloned if both the existing and new transaction support 3-D Secure.

199

o customerPhone
o customerMobile
o customerFax
o customerEmail
o customerOrderRef
o customerMerchantRef
o customerTaxRef

Supplier Information Fields (supplierFields)

o supplierName
o supplierCompany
o supplierAddress*
o supplierTown*
o supplierCounty*
o supplierPostcode*
o supplierCountryCode*
o supplierPhone
o supplierMobile
o supplierFax
o supplierEmail

• Receiver Information Fields (receiverFields)
o receiverName
o receiverCompany
o receiverAddress*
o receiverTown*
o receiverCounty*
o receiverPostcode*
o receiverCountryCode*
o receiverPhone
o receiverMobile
o receiverFax
o receiverEmail
o receiverAccountNo
o receiverDateOfBirth

• Delivery Information Fields (deliveryFields)
o deliveryName
o deliveryCompany
o deliveryAddress*
o deliveryTown*
o deliveryCounty*
o deliveryPostcode*
o deliveryCountryCode*
o deliveryPhone
o deliveryMobile
o deliveryFax
o deliveryEmail

• Shipping Information Fields (shippingFields)
o shippingMethod

200

o shippingTrackingRef
o shippingAmount
o shippingGrossAmount
o shippingNetAmount
o shippingTaxRate
o shippingTaxAmount
o shippingTaxReason
o shippingDiscountAmount
o shippingDiscountReason

• MCC 6012 Additional Authorisation Data (mcc6012Fields)
o receiverName
o receiverPostcode
o receiverAccountNo
o receiverDateOfBirth

• Payment Facilitator Data (facilitatorFields)1
o subMerchantID
o facilitatorID
o facilitatorName

1 Payment facilitator fields are only cloned if the existing transaction uses the same merchantID as the new transaction.

201

A-16.2 Cloned Groups

To allow for easy future addition of new fields, the existing fields are grouped into logic groupings.
Each group is given a name (as shown in brackets after the group title). It is recommended that
this group name be used in any cloneFields value instead of listing all the fields separately.

A-16.2.1 Compound Groups

To help maintain transaction integrity, certain groups of fields, such as address fields, can only be
copied as a whole entity and any new value provided in the new request will prevent the whole
group from being copied from the existing transaction.

These compound fields are marked with an asterisk in appendix A-16.1 and can be referred to in
cloneFields as logical groups using the following group names; merchantAddressFields,
customerAddressFields, deliveryAddressFields, supplierAddressFields and
receiverAddressFields.

A-16.2.2 Line Item Data

Any line item data (items) is copied over in its entirety and there is no way to merge the line item
from an existing transaction with any sent in a new transaction.

A-16.2.3 Amount Consistency

The Gateway does not validate that the various sub-amount fields, such as netAmount,
grossAmount, all add up to the actual requested amount. Therefore, these fields are currently
not treated as a compound group.

If a new amount value is passed that is different from the value in the existing transaction, then

the following fields should also be passed so that they tally with the new amount.

• grossAmount

• netAmount

• taxRate

• discountAmount

202

A-17 Stored Credentials Framework
To make sure merchants use their customers’ details responsibly, Visa and Mastercard have
introduced a new framework for the storing of card details and new rules for any associated
transactions. This framework identifies stored credentials as Credentials on File (COF) and
classifies the transaction that use them as either Consumer Initiated Transactions (CIT) or
Merchant Initiated Transactions (MIT).

If you process transactions using stored credentials, you may need to make changes to comply
with these rules.

Currently the only credentials stored are card details and so the terms Consumer, Customer and
Cardholder can be used interchangeably.

For backwards compatibility, the Gateway will try to automatically identify if a transaction is a
Consumer Initiated Transaction or a Merchant Initiated Transaction from the value provided for the
action, type and rtAgreementType fields.

You may also pass the initiator field in the request to force a classification. This can be used

if the Gateway is unable to correctly determine classify the transaction. If, however, the requested
classification is incompatible with the provided request fields then the transaction will fail with a
responseCode of 66944 (INVALID INITIATOR).

The initiator field will be returned in the response with either the value passed in the request

or the automatically identified value.

1 MIT type incremental is not currently supported but reserved for future use.

Field Name Mandatory? Description

initiator N Indicate who initiated the transaction.

Possible values are:
consumer – consumer initiated (CIT)
merchant – merchant initiated (MIT)

rtAgreementType No Consumer/Merchant agreement type.

Possible values are:
cardonfile – credential storage agreed (CIT/MIT).
recurring – recurring type CPA agreed (CIT/MIT).
instalment – instalment type CPA agreed (CIT/MIT).
unscheduled – adhoc COF payment (MIT)
incremental1 – authorisation amount increment (MIT)
resubmission – failed authorisation retry (MIT)
reauthorisation – expired authorisation refresh (MIT).
delayedcharges – post authorisation charges (MIT).
noshow – missed reservation penalty (MIT)

203

A-17.1 Credentials on File (CoF)

Credentials on File (CoF) is the process when the Consumer authorises you to store their
credentials (including, but not limited to, an account number or payment token) for future
transactions. This includes for future Recurring or Instalment payments and Unscheduled ad-hoc
payments, where the Consumer does not need to enter their payment credentials again.

These transactions must always be identified with the reason for storing or using the stored
credentials and who initiated the transaction - Consumer (CIT) or Merchant (MIT).

You may store the credentials and send them with the future transaction, or you may store the
details in the Gateway’s Wallet as described in section 18 or by taking advantage of the Payment
Tokenisation feature of the Gateway as described in appendix A-14. Either way you must tell the
Gateway of your intentions, we will not assume that just because you have asked, for example, to
store credentials in the Wallet that those are legitimate stored credentials and follow all the
requirements laid out below.

If you store credentials on file, then you must:

• Disclose to consumers how those credentials will be used.

• Obtain consumers’ consent to store the credentials.

• Notify consumers when any changes are made to the terms of use.

• Inform the card issuer via a transaction that payment credentials are now stored on file.

• Identify transactions with appropriate rtAgreementType when using stored credentials.

• Perform a PREAUTH, SALE or VERIFY transaction during the initial credential setup.

Note: Credentials stored to complete a single transaction (or a single purchase) for a Consumer,
including multiple authorisations related to that particular transaction or future refunds are not
considered stored credentials and can be stored and used without the following the above rules.

204

A-17.2 Consumer Initiated Transactions (CIT)

Consumer Initiated Transactions (CIT) are any transaction where the Consumer is actively
participating in the transaction. This can be either through a checkout experience online, via a mail
order or telephone order, with or without the use of an existing stored credential.

A Consumer Initiated Transaction is one whose action field is one of PREAUTH, SALE or

VERIFY and whose type is one of 1 (ECOM) or 2 (MOTO).

To indicate that the card details are to be stored as, or were stored as, Credentials on File then
send the rtAgreementType field as one of the following values:

• cardonfile – card details stored as Credential on File

• recurring – initial payment as the start of a recurring payment agreement.

• instalment – initial payment as the start of an instalment payment agreement.

If the card details are cloned from an existing transaction or loaded from a Gateway Wallet which
also stored the Credentials on File then the transaction will be flagged as subsequent use of
stored credentials rather than first use of them1.

Refer to section 13 for more information on recurring or instalment payment agreements.

1 For flagging of subsequent use the existing credentials will usually need to have been stored with the same Acquirer.

205

A-17.3 Merchant Initiated Transactions (MIT)

Merchant Initiated Transactions (MIT) are any transaction where you have performed the
transaction without the active participation of the Consumer. This would always be as a follow-up
to a previous Consumer Initiated Transaction (CIT).

Merchant Initiated Transactions are broken down in to two categories as follows.

A-17.3.4 Standing Instruction MITs

Merchant Initiated Transactions defined under this category are performed to address pre-agreed
standing instructions from the Consumer for the provision of goods or services.

The following transaction types are standing instructions transactions:

• Instalment Payments: A transaction in a series of transactions that use a stored credential
and that represent Consumer agreement for the merchant to initiate one or more future
transactions over a period for a single purchase of goods or services.

• Recurring Payments: A transaction in a series of transactions that use a stored credential
and that are processed at fixed, regular intervals (not to exceed one year between
transactions), representing Consumer agreement for the merchant to initiate future
transactions for the purchase of goods or services provided at regular intervals.

• Unscheduled Credential on File (UCOF): A transaction using a stored credential for a fixed
or variable amount that does not occur on a scheduled or regularly occurring transaction
date, where the Consumer has provided consent for the merchant to initiate one or more
future transactions. An example of such transaction is an account auto-top up transaction.

206

A-17.3.5 Industry-Specific Business Practice MIT

Merchant Initiated Transactions defined under this category are performed to fulfil a business
practice as a follow-up to an original Consumer-Merchant interaction that could not be completed
with one single transaction. Not every industry practice Merchant Initiated Transaction requires a
stored credential, for example, if you store card details for a single transaction or a single
purchase, it is not considered as a stored credential transaction.

The following transaction types are industry specific transactions1:

• Incremental2: Incremental authorizations can be used to increase the total amount
authorised if the authorised amount is insufficient. An incremental authorization request
may also be based on a revised estimate of what the Consumer may spend.

• Resubmission: You can perform a resubmission in cases where it requested an
authorization but received a decline due to insufficient funds; however, the goods or
services were already delivered to the Consumer. In such scenarios, you can resubmit the
request to recover outstanding debt from Consumers.

• Reauthorization: You can initiate a reauthorization when the completion or fulfilment of the
original order or service extends beyond the authorization validity limit set by the card
scheme.

• Delayed Charges: Delayed charges are performed to make a supplemental account charge
after original services have been rendered and payment has been processed.

• No Show: Consumers can use their payment credentials to make a guaranteed reservation
with certain merchant segments. A guaranteed reservation ensures that the reservation will
be honoured and allows you to perform a No Show transaction to charge the Consumer a
penalty according to your cancellation policy. If no payment is made to guarantee a
reservation, then it is necessary to perform a VERIFY Consumer Initiated Transaction at the
time of reservation to be able perform a No Show transaction later.

1 Not all Acquirers support all transaction types.
2 The Gateway does not currently support incremental authorisations.

207

A Merchant Initiated Transaction is one whose action field is one of PREAUTH, SALE or

VERIFY and whose type is one of 2 (MOTO) or 9 (CA) depending on the category.

To indicate the type of MIT, send the rtAgreementType field as one of the following values:

• recurring – subsequent payment as the start of a recurring payment agreement (CA).

• instalment – subsequent payment as the start of an instalment payment agreement (CA).

• unscheduled – subsequent payment not to a fixed schedule (MOTO)

• incremental – subsequent payment to increment initial amount authorised (MOTO)

• resubmission – subsequent payment due to failed initial payment (MOTO)

• reauthorisation – subsequent payment to refresh expired initial payment (MOTO)

• delayedcharges – subsequent payment for additional charges (MOTO)

• noshow – subsequent payment as penalty for missed reservation (MOTO)

The xref of the initial Consumer Initiated Transaction must be provided as follows:

• For standing order MITs the initial authorisation must have been a successful Consumer
Initiated Transaction with Credentials on File. This MIT will be a subsequent use of those
Credentials on File. For recurring and instalment MITs the initial authorisation must have
used the same rtAgreementType. The xref can be to the previous MIT in which case the

Gateway will follow the chain of transactions back to the initial CIT.

• For industry practice MITs the initial authorisation must be successful (apart from for a
resubmission) but need not have Credentials on File. For example, it may not be known at
the time of the initial authorisation that the MIT would be required and so the initial
authorisation would not necessarily have stored the Credentials on File. This is an example
of when an industry practice Merchant Initiated Transaction does not require a stored
credential

Note: For compatibility with existing practices, Instalment Payments and Recurring Payments
MITs use Continuous Authority (CA) type transactions while other MITs Mail Order/Telephone

Order (MOTO) type transactions. This use of MOTO is different to its use with a Consumer

Initiated Transaction (CIT).

Refer to section 13 for more information on recurring or instalment Continuous Authority
payment agreements.

208

A-18 Integration Libraries

We can provide a range of libraries to help you to integrate with the Gateway.

These libraries include simple sever-side classes in many popular programming languages
through to client-side scripts to help with the integration of the Hosted Payment Page or Hosted
Payment Fields.

The server-side libraries can be obtained by contacting customer support.

The client-side libraries can be downloaded directly from the Gateway server.

209

A-18.1 Gateway Integration Library

A simple server-side integration library is available to simplify the preparation and transmission of
Hosted and Direct Integration requests.

The library is available in many popular programming languages and is based around a single
class: the Gateway class.

The Gateway integration library does not currently support the preparation and
transmission of Batch Integration requests.

A-18.1.1 Library Namespace

To avoid polluting the global namespace, the library uses the ‘P3/SDK’ namespace where
supported by the language.

A-18.1.2 Gateway Configuration

Before you can use the Gateway class, you will need to configure the following properties to match

your integration parameters and authentication parameters documented in section 1.6.

Property Name Type Description

hostedURL string Absolute URL provided for the Hosted Integration.

[Default: Gateway’s Hosted Integration URL]

directURL string Absolute URL provided for the Direct Integration.
[Default: Gateway’s Direct Integration URL]

merchantID string Your unique Merchant ID to be passed in the merchantID integration field.
[Default: 100001]

merchantPwd string Any password configured on your Merchant Account as per section 1.6.1.
[Default: null]

merchantSecret string Any secret configured on your Merchant Account as per section 1.6.2.
[Default: Circle4Take40Idea]

proxyUrl string Absolute URL to any proxy required for connections. (eg https://www.proxy.com:3128)
[Default: null]

debug boolean True to enable debugging output.
[Default: false]

210

A-18.1.3 Gateway Methods

The follow methods are made available by the Gateway class:

string hostedRequest(mixed[] request, string[] options)

Return an HTML fragment that can be included in your webpage to render a <form> which will
send the provided request data to the Gateway’s Hosted Integration when submitted.

The request parameter should be an associative array containing the request fields required to

be sent. The request fields are not validated.

The following class properties are used unless alternative values are provided in the request

array: directUrl, merchantID, merchantPwd, merchantSecret.

The options parameter is an optional associative array containing options that can be used to

modify the returned HTML fragment as follows:

• formAttrs – string containing additional attributes to include in the form tag.

• submitAttrs – string containing additional attributes to include in the submit button tag.

• submitImage – string containing the URL to use as the submit button.

• submitHtml – string containing HTML to use as the label on the submit <button>.

• submitText – string containing text to use as the label on the submit <input>.

The submitImage, submitHtml and submitText options are mutually exclusive and will be

checked for in that order. If none is provided, then a submitText value of ‘Pay Now' is

assumed.

If a merchantSecret is provided, then the method will add the correct signature field to the

request.

An exception is thrown if the HTML fragment cannot be composed.

The verifyResponse() method can be used to validate and decode any response POSTed

back to your website.

Please refer to appendix A-21.1.1 for an example of how to use this method.

Returns a string containing the HTML fragment if successful; throws an exception otherwise.

211

mixed[] directRequest(mixed[] request, string[] options)

Return the response received when sending the provided request to the Gateway’s Direct
Integration.

The request parameter should be an associative array containing the request fields required to

be sent. The request fields are not validated.

The following class properties are used unless alternative values are provided in the request

array: directUrl, merchantID, merchantPwd, merchantSecret.

The options parameter is not used and reserved for future use.

If a merchantSecret is provided, then the method will add the correct signature field to the

request and check the signature field on the response.

An exception is thrown if the request cannot be sent; or the response cannot be received; or if
the response’s signature is incorrect.

Please refer to appendix A-21.1.2 for an example of how to use this method.

Returns an associative array containing the received response fields; otherwise, throws an
exception.

212

void prepareRequest(mixed[] &request, string[] &options,
 string &secret, string &direct_url, string &hosted_url)

Prepare a request for sending to the Gateway’s Direct Integration.

The request parameter should be a reference to an associative array containing the request

fields required to be sent. The request fields are not validated.

The merchantSecret, directUrl and hostedUrl configuration properties will be returned in

the secret, direct_url and hosted_url method parameters. These properties can be

overridden by providing them in the request, in which case they will be extracted and removed

from the request.

The merchantID and merchantPwd configuration properties will be added to the request.

A few known Gateway response fields will be removed from the request, if present, to avoid
confusion, notably the responseCode, responseMessage, responseStatus, state fields.

An exception will be thrown if the request does not contain an action element or a merchantID
element (and none could be inserted).

void verifyResponse(mixed[] &response, string secret)

Verify a response received from the Gateway’s Hosted or Direct Integration.

The response parameter should be a reference to an associative array containing the response

received from the Gateway, either from the Direct Integration or as POSTed from the Hosted
Integration.

The secret parameter should be any Merchant secret to use when checking the response’s

signature element. If not provided, then the value of the merchantSecret property is used.

Any signature element is removed from the response.

An exception is thrown if the response is not valid, does not contain a responseCode element

or its signature is incorrect.

Please refer to appendix A-21.1.1 for an example of how to use this method.

213

string sign(mixed[] request, string secret, mixed partial = false)

Return the signature for the provided request data.

The request parameter should be a reference to an associative array containing the request

fields required to be sent. The request fields are not validated.

The secret parameter should be the Merchant secret to use when signing the request.

The partial parameter should be either the boolean false or comma separated string; or an

array of strings containing the names of the request elements to sign.

Returns a string containing the correct signature for the request.

214

A-18.2 Hosted Payment Page Library

A simple client-side script is available to simplify the displaying of the Hosted Payment Page in a
lightbox overlaying your website.

The library is available as a JavaScript script and is based around a single class: the Form class.

The script is compatible with most modern web browsers.

The script can be loaded directly from our Gateway server as follows1:

1. <script src="https://gateway.example.com/sdk/web/v1/js/hostedforms.min.js"></script>

If the script detects the presence of the jQuery API, then it will extend the jQuery object with its
own plugin method. However, jQuery is not needed in order to use the script.

A-18.2.1 Hosted Payment Pages

Hosted Payment Pages are a prebuilt webpage residing on our server that you can use to collect
sensitive payment details without those details’ touching your server. The standard Hosted
Payment Page is designed so that it can be displayed in a transparent overlay over your website,
thus making the Customer feel as though they never left your shopping cart.

The standard Hosted Integration examples redirect the Customer’s browser to the Hosted
Payment Page, resulting it appearing on a new browser page and not overlaying your website.
The Hosted Payment Page library provides the scripting necessary to result in the redirection,
causing the Hosted Payment Page to appear in an overlay and not a new browser page, without
your having to make any modifications to your website. The library can also simplify the creation of
the Hosted Integration redirection FORM if required.

A-18.2.2 Library Namespace

To avoid polluting the global namespace, the library extends the global window object with a

hostedForms object containing the following properties:

• forms – array containing all the instantiated Form objects.

• classes – array containing all the instantiable classes.

o form – Form class prototype.

1 Please use the correct hostname as provided in section 1.6.

215

A-18.2.3 Form Construction

The construction method can be used to build and prepare a HTML FORM element for use with
the modal Hosted Payment Page; or to prepare an existing element. The method signature is as
follows:

Form(element, data)

The element parameter should be either the id or DOM node of an existing FORM or DIV DOM

element.

If the element is a DIV node, then the data is used to create a new FORM node within the

element.

If the element is a FORM node, then the data is used to modify the existing FORM element.

The data parameter should be an object containing construction details and can contain the

following optional properties:

• id – string containing the value to use as the FORM tag’s id attribute.

• url – string containing the URL to use as the FORM tag’s src attribute.

• attrs – object whose properties are added as additional attributes on the FORM tag.

• modal – boolean indicating that the HPP should open in a modal overlay.

• data – object whose properties are added as hidden input elements in the FORM.

• submit – object containing details for a submit button that should be added to the FORM.

o type – type of submit button, either ‘auto’, ‘image’, ‘button’, ‘input’

o id – string containing the value to use as the submit button’s id attribute.

o attrs – object whose properties are added as additional attributes on the submit button.

o label – string containing button label (or ‘alt’ attribute for ‘image’ buttons)

o src – string containing image URL for ‘image’ buttons.

The constructor will submit the FORM immediately after preparation if the data.submit.type

property is ‘auto’; or if the existing FORM element has a data-hostedform-autosubmit

attribute. Otherwise, an event handler will be attached to the submit button to disable it
automatically when clicked, to help prevent your Customer from clicking it twice.

The constructor will prepare the FORM so that the Hosted Payment Page (HPP) will be opened in
a modal overlay if the data.modal property is true; or if the existing FORM element has a data-

hostedform-modal attribute; or has an action attribute containing the string ‘modal/’ or ending

in the string ‘modal’.

The modal overlay is automatically created as a semi-opaque IFRAME element that fills the
browser display. The Hosted Payment Page is then loaded into this IFRAME and, being semi-
opaque, your shopping cart will remain visible beneath, but greyed out and noninteractive. When
the Customer closes the Hosted Payment Page, then their browser will be redirected to the URL
you provided using the redirectURL parameter. This will cause the original page and IFRAME

to be replaced by your new page.

216

A-18.2.4 Form Methods

The follow methods are made available by the Form class:

void destroy()

Destroys the Form, reverting its element back to its original state.

217

A-18.2.5 jQuery Plugin

If the jQuery API has been loaded into the browser before the script, then it will extend the jQuery
object with its own plugin method.

Construction and destruction can then be done as follows:

$(element).hostedForm(data);
$(element).hostedForm(‘destroy’);

218

A-18.3 Hosted Payment Fields Library

A simple client-side script is available to support the displaying of Hosted Payment Fields in your
payment form.

The library is available as a JavaScript script and is based around two classes: the Form and

Field classes. The script is compatible with most modern web browsers.

The script can be loaded directly from our Gateway server as follows1:

1. <script src="https://gateway.example.com/sdk/web/v1/js/hostedfields.min.js"></script>

The script requires the jQuery API, which must be loaded prior to the script.

A-18.3.1 Hosted Payment Fields

Hosted Payment Fields are a set of prebuilt JavaScript UI components that can be used by your
website’s HTML payment form to collect sensitive payment details without those details touching
your server. They provide you with the PCI benefits of using a Hosted Payment Page, while
allowing you the ability to design and implement your own payment forms.

There are 6 predefined Hosted Payment Fields available as follows:

• cardNumber – collects the card number.

• cardCVV – collects the card cvv.

• cardExpiryDate – collects the card expiry month and year.

• cardStartDate – collects the card start/issue month and year.

• cardIssueNumber – collects the card issue number.

• cardDetails – collects the card number, expiry date and cvv in a single field.

The cardNumber field is designed to collect a card number, including an icon used to display the
card type. The field will only accept digits and spaces and validate that any entered value is a
correctly formatted card number and insert spaces at the correct positions for the card type as the
number is typed.

The cardCVV field is designed to collect a card CVV. The field will only accept digits and will
validate that any entered value is a correctly formatted CVV, taking into account the card type as
determined by an associated cardNumber field.

The cardExpiryDate and cardStartDate fields are designed to collect a card expiry date and card
issue date respectively. The fields can render as a pair of select controls containing the months
and a suitable range of years; or as an input control that will only allow digits to be entered and
automatically formatted as a month / year entry. The field will validate that any entered value is a
valid month and year combination.

1 Please use the correct hostname as provided in section 1.6.

219

The cardIssueNumber field is designed to collect a card issue number. The field will only accept
digits and will validate that any entered value is a correctly formatted issue number.

The cardDetails field is designed to collect all of the essential card details. It combines the
cardNumber, cardExpiryDate and cardCVV fields into a single line compound field design to
allow easy entry of the card details and to complement the look of your checkout.

The field type is either: passed as the value of the type option the Field construction, provided by

the HTML element’s meta data; or provided via the HTML element’s type attribute (prefixed with
the ‘hostedfield:’ name space).

The following example shows all three approaches to specifying the field type:

1. <input type="hostedfield:cardNumber" name="card-number">

2. <div class="hostedfield" data-hostedfield-type="cardExpiryDate"></div>

3. <input data-hostedfield='{"type":"cardCVV"}'>

It is highly recommended that you adopt a single approach as above and don’t mix and match.

Each field type has its own additional configuration options, as detailed in section A-18.3.6.

A-18.3.2 Library Namespace

To avoid polluting the global namespace, the library extends the global window object with a

hostedFields object containing the following properties:

• forms – array containing all the instantiated Form objects.

• classes – array containing all the instantiable classes.

o form – Form class prototype.

220

A-18.3.3 Form Construction

The construction method can be used to prepare a HTML FORM for use with Hosted Payment
Field components. The method signature is as follows:

Form(element, options)

The element parameter should be the DOM node of an existing FORM tag.

The options parameter should be object containing one of more of the following optional

properties:

• autoSetup – boolean indicating whether setup should be handled automatically.

• autoSubmit – boolean indicating whether submission should be handled automatically.

• merchantID – string containing the merchantID the payment request is for.

• stylesheet – string containing DOM selector for any stylesheets to be used.

• tokenise – string/array/object specifying fields whose values should be tokenised.

• fields – object containing field configuration by field type.

• locale – string containing the desired locale.

• classes – object containing names of extra CSS classes to use.

• submitOnEnter – boolean indicating whether the enter key should cause the form to submit.

• nativeEvents – boolean indicating that native browser events should be fired.

Any options parameter will be merged with those provided via meta data supplied, using data-
hostedfield and/or data-hostedfield-<option> attributes; or via existing attributes or

properties of the element.

The autoSetup option can be used to disable the automatic creation of Field objects for the

FORM child controls by calling the autoSetup() method during the Form construction. If

automatic setup is disabled, then you must manually instantiate Field objects and attach them to

the Form as required, using the addField() method. This option or manually calling the

autoSetup() method minimises the amount of JavaScript you have to write. Automatic operation

is good if you don’t need to customise the operation or can’t customise it by reacting to the Form or

Field events. The option defaults to true and cannot be changed once the Form has been

created.

The autoSubmit option can be used to disable the automatic handling of the FORM submission

via the autoSubmit() method. If automatic submission is disabled, then you must manually

retrieve the sensitive payment details by calling getPaymentDetails() and include them in the

form submission data. This option or manually calling the autoSubmit() method minimises the

amount of JavaScript you have to write. Automatic operation is good if you don’t need to
customise the operation or can’t customise it by reacting to the Form or Field events. The option

defaults to true and cannot be changed once the Form has been created.

The merchantID option can be used to specify the merchantID with which the final

paymentToken will be used. The option defaults to the value of any child INPUT node whose

name is ‘merchantID’ and can be changed at runtime by calling the setMerchantID() method or

by altering the options using the jQuery hostedForm() plugin method.

The stylesheet option can be used to specify a DOM selector used to locate stylesheets that

should be parsed for styles related to the Hosted Payment Fields. Refer to section A-18.3.10 for

221

how to style the Hosted Payment Fields using CSS stylesheets. The option defaults to the DOM
selector string ‘link.hostedfield[rel=stylesheet], style.hostedfield' and can be changed at runtime by
calling the setStylesheet() method; or by altering the options using the jQuery hostedForm()

plugin method.

The tokenise option can be used to specify addition FORM controls whose values, as returned

by the jQuery.val() method, should be included in the final paymentToken.

The option’s value must be either:

• A string containing a DOM selector used to select one or more controls.

• An array containing values used to jQuery.filter() down to one or more controls.

• An object whose properties are the name of fields to tokenise and whose values are objects
containing a selector property used to select a control.

For the first two, the tokenised field’s name be will be taken from the controls data-hostedfield-
tokenise attribute or name attribute. For the third, the name is property name in the tokenise

object. If the field’s name is of the format ‘paymentToken[<name>]’, then only the ‘<name>’ part is
used. The option defaults to the DOM selector string 'INPUT.hostedfield-tokenise:not(:disabled),
INPUT[data-hostedfield-tokenise]:not(:disabled), INPUT[name^="paymentToken["]:not(:disabled)'
and cannot be changed once the Form has been created.

The fields options can be used to specify default options for the different types of Hosted

Payment Fields. The option’s value should be an object whose properties are the fields type or the
wildcard type ‘any’ and whose values are objects whose properties are the default options for
fields of that type. The values can also contain a selector property containing a DOM selector

that is used during the automatic setup stage to select a FORM’s child element to add as a Field

of the specified type automatically. The option has no default value and cannot be changed once
the Form has been created.

The locale option can be used to specify the language that should be used by the Hosted

Payment Fields attached to this Form. The option defaults to the value provided by any lang

attribute on the element or closest ancestor and cannot be changed once the Form has been

created.

The classes options can be used to specify additional CSS class names to add in addition to the

default classes documented in section A-18.3.9. The value is an object whose properties are the
default class name and whose values are a string containing the additional class name(s) to use.
The option has no default and cannot be changed once the Form has been created.

The submitOnEnter option can be used to specify if pressing the enter key when typing a Field

value should cause the Form to submit. The option defaults to false and cannot be changed once

the Form has been created.

The nativeEvents option can be used to specify that any associated native event should be fired

when a ‘hostedField:’ prefixed Field event is fired (as documented in section A-18.3.8). For

example, when enabled if the ‘hostedfield:mouseover’ event is fired, then the native ‘mouseover’
event is also fired. The option defaults to false and cannot be changed once the Form has been

created.

222

If not explicitly constructed, a Form object will be automatically instantiated and attached to the

FORM DOM node as soon as any Field object is instantiated on a child DOM node.

Example Form construction is as follows:

1. var form = new window.hostedFields.classes.Form(document.forms[0],{

2. // Auto setup the form creating all hosted fields (default)

3. autoSetup: true,

4.

5. // Auto validate, tokenise and submit the form (default)

6. autoSubmit: true,

7.

8. // Additional fields to tokenise

9. tokenise: '.add-to-token',

10.

11. // Stylesheet selection

12. stylesheets: '#hostedfield-stylesheet',

13.

14. // Optional field configuration (by type)

15. fields: {

16. any: {

17. nativeEvents: true

18. },

19. cardNumber: {

20. selector: $('#form2-card-number'),

21. stylesheet: $('style.hostedform, style.hostedform-card-number')

22. }

23. },

24.

25. // Additional CSS classes

26. classes: {

27. invalid: 'error'

28. }

29. });

Or using meta data on the HTML FORM element:

1. <form data-hostedfields='{"autoSetup":true,"autoSubmit":true,"tokenise":".add-to-

token","stylesheets":"#hostedfield-

stylesheet","fields":{"any":{"nativeEvents":true},"cardNumber":{"selector":"#form2-card-

number","stylesheet":"style.hostedform, style.hostedform-card-

number"}},"classes":{"invalid":"error"}}' method="post" novalidate="novalidate" lang="en">

2. <script>

3. var form = new window.hostedFields.classes.Form{document.forms[0]);

4. </script>

223

A-18.3.4 Form Methods

The follow methods are made available by the Form class:

void autoSetup()

Automatically setup the form by scanning the Form element for child nodes to control as Hosted
Payment Fields. Child nodes are selected if they:

• have a type attribute with a hostedfield:<type> value (INPUT nodes only).

• have a data attribute with a hostedfield.<type> property.

• match a DOM selector provided by the fields.<type>.selector option.

If multiple selection criteria are present, then they must all specify the same Field type or an

exception is thrown.

This method is called during the Form construction unless the autoSetup option is false.

void autoSubmit()

Automatically handles any attempted FORM submission by checking the FORM’s controls are
valid by calling the validate() method; and then requesting the paymentToken using the

getPaymentDetails() method; and finally adding the token to the forms fields using the

addPaymentToken() method. Failure to validate or request the payment token will cause the

form submission to be stopped.

You can affect the automatic submission stages by listening for events and preventing their
default actions. The full list of events is documented in section A-18.3.5.

This method is attached to the FORM submit event during the Form construction unless the

autoSubmit option is false, or the autoSubmit option is null and the autoSetup option is false.

If automatic submission is disabled, then you must react to the FORM’s submit event and then
request the paymentToken using the getPaymentDetails() method and ensure that the

token is sent as part of the form’s data.

boolean addField(Field f)

Add a hosted Field to the Form.

Returns true if successful, false otherwise.

boolean delField(Field f)

Remove a hosted Field from the Form.

Returns true if successful, false otherwise.

224

promise validate(boolean submitting)

Validate all Field values on the Form, either during submission or not.

Returns a promise that will be resolved when the validation is complete.

object[] getInvalidElements()

Get details about all invalid FORM controls (not just invalid hosted Field elements).

Returns an array of objects containing the following properties:

• element – DOM element.

• message – DOM elements validationMessage property or ‘Invalid value’.

• label – associated LABEL text.

• field – Field instance (if DOM element is a hosted Field).

object getValidationErrors()

Get the validation errors for all invalid FORM controls (not just invalid hosted Field elements).

Returns an object whose properties are the associated labels, names or id of the invalid FORM
controls and whose values are the error message for that control.

promise getPaymentDetails(object tokenData, boolean validate)

Gets the payment details, generating a paymentToken containing the hosted Field values; any

values specified by the tokenise option; and any passed tokenData. The Form will be

validated first if required.

Returns a promise that will be resolved when the payment details have been obtained, passing

the details as an object containing the following properties:

• success – boolean true if successful, false otherwise.

• message – string containing message to display if not successful.

• errors – object containing details about invalid payment data.

• invalid – object as returned by getValidationErrors() method.

• paymentToken – string containing generated paymentToken.

void addPaymentToken(string token)

Add the payment token as the value of a Form child INPUT whose name is ‘paymentToken’,

creating the control if needed. Any created control will be given a type of ‘hidden’.

void setMerchantID(string merchantID)

Set the merchantID used by the payment form.

225

void setStylesheet(string selector)

Set the DOM selector used to select the stylesheet(s) used by the Form.

object defaultFieldOptions(string type)

Get any default field options specified via the fields option, resulting from the merger of its

optional any and <type> properties.

Returns an object whose properties are the default options.

void forceSubmit()

Forcefully submit the FORM element as if a child submit button had been clicked.

void reset()

Reset all the Form, setting all Field values back to their initial values.

void destroy()

Destroys the Form, reverting its element back to its original state.

226

A-18.3.5 Form Events

The following events may be fired by the Form object and you can use these to hook into and

modify the object’s behaviour:

Event Name1 Description

create Fired when a Form has been created.

destroy Fired when a Form has been destroyed.

presubmit Fired by the autoSubmit() method prior to handling the submission. You can

prevent the handling of the submission and handle it yourself by calling the
Events preventDefault() method.

valid Fired by the autoSubmit() method if the FORM contains valid data prior to

requesting the payment details. You can prevent the continued handling of the
submission and handle it yourself by calling the Events preventDefault()

method or by invalidating the FORM.

submit-invalid Fired by the autoSubmit() method if the FORM contains invalid data prior to

displaying the validity using the DOM reportValidity() method. You can

prevent the reportValidity() call and display the validity yourself by calling the

Events preventDefault() method.

submit Fired by the autoSubmit() method prior to submitting the FORM. You can

prevent the FORM from submitting by calling the Events preventDefault()

method.

error Fired by the autoSubmit() method if an exception is caught prior to displaying

the error, using the JavaScript alert() function. You can prevent the alert()

call and display the error yourself by calling the Events preventDefault()

method.

1 Event names are prefixed with the ‘hostedform:’ namespace not shown in the table.

The presubmit, valid, submit-invalid, submit and error events fired by the autoSubmit()

method the payload is an object with the following properties:

• success – boolean false.

• message – error message if error otherwise null.

• invalid – result of getValidationErrors() method if Form invalid.

• submitting – boolean true.

.

227

A-18.3.6 Field Construction

The construction method can be used to prepare a HTML INPUT control as a Hosted Payment
Field or to create a new field in HTML DIV container. The method signature is as follows:

Field(element, options)

The element parameter should be the DOM node of an existing INPUT or DIV tag.

The options parameter should be object containing one of more of the following optional

properties:

• type – string containing the desired field type.

• value – string containing the initial value.

• placeholder – string containing any placeholder text.

• style – string containing any inline CSS styles.

• stylesheet – string containing DOM selector for any stylesheets to be used.

• disabled – boolean indicating if initially disabled.

• required – boolean indicating if the value is required.

• readOnly – boolean indicating if initially read only.

• validity – boolean or string indicating the initial validity.

• locale – string containing the desired locale.

• classes – object containing names of extra CSS classes to use.

• submitOnEnter – boolean indicating if the enter key should cause the form to submit.

• nativeEvents – boolean indicating that native browser events should be fired.

• validationMessages – object containing alternative validation messages.

o required – string containing validation message to use when a value is required.

o invalid – string containing validation message to use when a value is invalid.

• format – string containing select option format for date fields.

• minYear – integer containing minimum year (relative to current year) for date fields.

• maxYear – integer containing maximum year (relative to current year) for date fields.

Any options parameter will be merged with those provided via meta data supplied using data-
hostedfield and/or data-hostedfield-<option> attributes, or via existing attributes or

properties of the element or provided via the getDefaultOptions() method of the parent Form.

The type option can be used to specify the type of Hosted Payment Field required. It defaults to

the value provided by any type attribute on the element (prefixed with the ‘hostedfield:’

namespace). The option cannot be changed once the Field has been created. Valid types are

cardDetails, cardNumber, cardCVV, cardExpiryDate, cardStartDate, cardIssueNumber.

The value option can be used to specify any initial value that should be used by the Field. It

defaults to the value provided by any value attribute or property on the element. Obviously, due

to the purpose of the Hosted Payment Fields, any initial value is not wise for card number and
CVV fields. The option can be changed at runtime by calling the setValue() method.

228

The placeholder option can be used to specify any initial text that should be used as a

placeholder by the Field. It defaults to the value provided by any placeholder attribute or

property on the element. When used with the CardDetails type Field the placeholder contains

three parts separated by a pipe character, the first part contains the cardNumber placeholder, the
second part contains the cardExpiry placeholder, and the third part contains the cardCVV
placeholder. The option can be changed at runtime by calling the setPlaceholder() method or

by altering the options using the jQuery hostedForm() plugin method.

The style option can be used to specify any initial inline CSS style that should be used by the

Field. It defaults to the value provided by any style attribute or property on the element. The

option can be changed at runtime by calling the setStyle() method or by altering the options

using the jQuery hostedForm() plugin method.

The stylesheet option can be used to specify a DOM selector used to locate stylesheets that

should be parsed for styles related to this Field. Refer to section on styling fields. The option can

be changed at runtime by calling the setStylesheet() method or by altering the options using

the jQuery hostedForm() plugin method.

The disabled option can be used to specify if the Field should be initially disabled. It defaults to

the value provided by any disabled attribute or property on the element. The option can be

changed at runtime by calling the setDisabled() method or by altering the options using the

jQuery hostedForm() plugin method.

The required option can be used to specify if the Field value is required. It defaults to the value

provided by any required attribute or property on the element. The option can be changed at

runtime by calling the setRequired() method or by altering the options using the jQuery

hostedForm() plugin method.

The readOnly option can be used to specify if the Field should be initially read-only. It defaults to

the value provided by any readOnly attribute or property on the element. The option can be

changed at runtime by calling the setReadOnly() method or by altering the options using the

jQuery hostedForm() plugin method.

The validity option can be used to specify if the Field should be initially marked as invalid. It

defaults to the value provided by any validity property on the element. The option can be

changed at runtime by calling the setValidity() method or by altering the options using the

jQuery hostedForm() plugin method.

The locale option can be used to specify the language that should be used by the Field. It

defaults to the value provided by any lang attribute or property on the element or closest

ancestor. The option cannot be changed once the Field has been created.

The classes options can be used to specify additional CSS class names to add in addition to the

default classes documented in section A-18.3.9. The value is an object whose properties are the
default class name and whose values are a string containing the additional class name(s) to use.
This option will be merged with any classes option provided to the Form constructor. The option

cannot be changed once the Form has been created.

229

The submitOnEnter option can be used to specify if pressing the enter key when typing the

Field value should cause the Form to submit. The option defaults to false and cannot be changed

once the Field has been created.

The nativeEvents option can be used to specify that any associated native event should be fired

when a ‘hostedfield:’ prefixed event is fired. Events are documented in section A-18.3.8. For
example, when enabled if the ‘hostedfield:mouseover’ event is fired then the native ‘mouseover’
event is also fired. The option defaults to false and cannot be changed once the Field has been

created.

The validationMessages option can be used to specify alternative validation messages that

should be displayed when a value is required or invalid. The option defaults to suitable messages
depending on the locale and cannot be changed once the Field has been created.

The dropdown option can be used to specify that a cardStartDate or cardExpiryDate Field

should be displayed as a pair of select controls to select the month and year, otherwise the month
and year are entered via a formatted input box instead. The option defaults to false and cannot be
changed once the Field has been created.

The format option can be used in conjunction with the dropdown option to specify the format used

to display the month and year in the dropdowns. The month and year parts of the format are
separated by a pipe character. The option defaults to ‘N – M | Y’ (e.g. ‘01 – January | 2020’) and
cannot be changed once the Field has been created.

The following formatting characters are understood:

• n – month number (no zero prefixing).

• N – month number (zero prefixed to two digits when required).

• m – short month name (e.g. Jan, Feb, Mar)

• M – long month name (e.g. January, February, March)

• y – two digit year number.

• Y – four digit year number.

The minYear and maxYear options can be used in conjunction with the dropdown option to specify

the minimum and maximum years that are included in the year dropdown. The option defaults to
minus 20 to zero for a cardStartDate Field or zero to plus 20 for a cardExpiryDate Field and

cannot be changed once the Field has been created.

230

Example Field construction is as follows:

1. var field = new window.hostedFields.classes.Field(document.forms[0].elements[0], {

2. // Field type

3. type: 'cardNumber',

4.

5. // Stylesheet selection

6. stylesheets: '#hostedfield-stylesheet',

7.

8. // Additional CSS classes

9. classes: {

10. invalid: 'error'

11. }

12. });

Or using meta data on the HTML INPUT element:

1. <input type="hostedfield:cardNumber" data-hostedfields='{"stylesheet":"style.hostedform, style.hostedform-card-

number"}},"classes":{"invalid":"error"}}'>

2. <script>

3. var field = new window.hostedFields.classes.Field{document.forms[0].elements[0]);

4. </script>

231

A-18.3.7 Field Methods

The follow methods are made available by the Field class:

promise validate()

Validate the Field value. This will normally be called automatically when the Field loses focus

or the form is submitted, or when an invalid value is modified.

Returns a promise that will be resolved when the validation is complete.

boolean isEmpty()

Check if the Field has a value.

Returns true if the field has a value, false otherwise.

boolean isComplete()

Check if the Field has a complete, but not necessarily valid, value. This is mainly used by

compound fields such as cardDetails, cardExpiryDate, cardStartDate, which contain multiple
input controls and are deemed complete when all their required input controls have values.

Returns true if the value is complete, false otherwise.

void setStyle() / string getStyle()

Set or gets the field’s inline CSS style data.

Returns void when setting, or a CSS style string when getting.

void setStylesheet(string selector) / string getStylesheet()

Sets or gets the DOM selector used to select the stylesheet(s) used by the Field. When

setting, the stylesheets are parsed and applied to the Field.

Returns void when setting, or a DOM selector string when getting.

232

void setPlaceholder(string text) / string getPlaceholder()

Sets or gets the placeholder text to be shown when the Field has no value.

When used with the CardDetails type Field the placeholder contains three parts separated by

a pipe character, the first part contains the cardNumber placeholder, the second part contains
the cardExpiry placeholder, and the third part contains the cardCVV placeholder.

Returns void when setting, or a text string when getting.

void setDisabled(boolean disabled) / string getDisabled()

Sets or gets the disabled state of the Field. When disabled, the field will be greyed out and not

be focusable and thus will not react to any input events.

A disabled Field will have the ‘hf-disabled’ class added otherwise the ‘hf-enabled’ class is

added.

Returns void when setting, or a boolean representing the state when getting.

void setRequired(boolean required) / string getRequired()

Sets or gets the required state of the Field. When required, the field will be invalid if it contains

no value or a blank value.

A required Field will have the ‘hf-required’ class added otherwise the ‘hf-optional’ class is

added.

Returns void when setting, or a boolean representing the state when getting.

void setReadOnly(boolean read_only) / string getRequired()

Sets or gets the read-only state of the Field. When read-only, the field will be not be focusable

and thus will not react to any input events.

A read-only Field will have the ‘hf-readonly’ class added otherwise the ‘hf-readwrite’ class is

added.

Returns void when setting, or a boolean representing the state when getting.

233

void setFocused(boolean focused)

Moves the browser’s focus to the Field. When focused, the field will react input events.

A focused Field will have the ‘hf-focus’ class added otherwise the ‘hf-blur’ class is added.

Returns void when setting, or a boolean representing the state when getting.

void setValidity(string validity) / string getValidity()

Sets or gets the validity of the Field. When valid, the validity will be true or a blank string.

When invalid, the validity will be an error message explaining the reason the value is invalid.

When used with the CardDetails type Field the error message contains three parts separated

by a pipe character, the first part contains the cardNumber value, the second part contains the
cardExpiry value, and the third part contains the cardCVV value.

A valid Field will have the ‘hf-valid’ and ‘hf-user-valid’ classes added otherwise the ‘hf-invalid’

and ‘hf-user-invalid’ classes are added.

Returns void when setting, or an error message string when getting.

void setValue() / string getValue()

Set or gets the Field value. Because Hosted Payment Fields are designed for the entry of

sensitive payment details, then these methods are not normally used. There is no means to
retrieve the actual sensitive data and so any returned value will be an empty string if the field
has no value or a single asterisk if the field has a value.

When used with the CardDetails type Field the value contains three parts separated by a pipe

character, the first part contains the cardNumber value, the second part contains the
cardExpiry value, and the third part contains the cardCVV value.

Returns void when setting, or a mask string when getting.

234

void getState()

Get the current state of the Field as an object with the following boolean properties:

• isReady – the Field has been created, initialised and is ready for use.

• isValid – the value is valid (refer to the setValidity() method).

• isEmpty – the value is empty (refer to the isEmpty() method).

• isComplete – the value is complete (refer to the isComplete() method).

• isDisabled – the value is complete (refer to the setDisabled() method).

• isRequired – the value is complete (refer to the setRequired() method).

• isReadOnly – the value is complete (refer to the setReadOnly() method).

Returns an object containing the states.

void reset()

Reset Field value back to the initial value.

void destroy()

Destroys the Form, reverting its element back to its original state.

Note: A field’s options or properties cannot be changed while a field is initialising: that is between
construction and firing of the ‘ready’ event. Attempts to change field options or properties before
this will be ignored.

235

A-18.3.8 Field Events

The following events may be fired by the Field object and you can use these to hook into and

modify the object’s behaviour:

Event Name1 Description

create Fired when a Field has been created.

destroy Fired when a Field has been destroyed.

ready Fired when a Field style is has finished initialising and is ready.

style Fired when a Field style is changed.

autofill Fired when a Field has a value auto filled by the browser.

autofillcancel Fired when a Field has an auto filled value removed.

valid Fired when a Field is checked for validity and passes the check.

invalid Fired when a Field is checked for validity and fails the check.

uservalid Fired when the valid event is fired but only after user interaction has occurred,
such as focusing a Field, leaving a Field or attempting to submit a Form.

userinvalid Fired when the invalid event is fired but only after user interaction has occurred,
such as focusing a Field, leaving a Field or attempting to submit a Form.

disabled Fired when a Field changes to disabled.

enabled Fired when a Field changes from disabled.

required Fired when a Field changes to required.

optional Fired when a Field changes from required.

readonly Fired when a Field changes to read-only.

readwrite Fired when a Field changed from read-only.

focus Fired when a Field receives focus.

blur Fired when a Field loses focus.

mouseenter Fired when a pointing device is moved into the Field.

mouseleave Fired when a pointing device is moved out of the Field.

mouseover Fired when a pointing device is moved into the Field.

mouseout Fired when a pointing device is moved out of the Field.

mousemove Fired when a pointing device is moved over the Field.

keydown Fired when a key is pressed in the Field.

keyup Fired when a key is released in a Field.

236

keypress Fired when a key except Shift, Fn, CapsLock is in a pressed position in a Field.

change Fired when an alteration to the value of a Field is committed by the user.

input Fired when the value of a Field is changed.

1 Event names are prefixed with the ‘hostedfield:’ namespace not shown in the table.

237

A-18.3.9 Field CSS Classes

The following CSS class names will be added to a Field object depending on its state and you

can use these to style the object as required:

Event Name Description

hostedfield Present on all Field elements.

hf-autofill Present when the value was auto filled by the browser.

hf-invalid Present when in the invalid state.

hf-valid Present when in the valid state.

hf-user-invalid Present when in the invalid state and user interaction has occurred, such as
focusing a Field, leaving a Field or attempting to submit a Form.

hf-user-valid Present when in the valid state and user interaction has occurred, such as
focusing a Field, leaving a Field or attempting to submit a Form.

hf-disabled Present when in the disabled state.

hf-enabled Present when not in the disabled state.

hf-required Present when in the required state.

hf-optional Present when not in the required state.

hf-readonly Present when in the read-only state.

hf-readwrite Present when not in the read-only state.

hf-focus Present when in the focused state.

hf-blur Present when not in the focused state.

hf-empty Present when in the empty state.

hf-complete Present when in the complete state.

hf-hover Present when a pointing device is over the Field.

hf-placeholder-shown Present when the placeholder text is displayed.

In addition to these class names, the Field will add any corresponding class names provided by

the classes option provided when the Field is constructed.

For example if the Field is constructed with a classes option as follows ‘{disabled: ‘text-
blur text-grey’, enabled: ‘text-normal’}’, then the ‘text-blur’ and ‘text-grey’ class names

will be present whenever the ‘hf-disabled’ class is present and the ‘text-normal’ class name will be
present whenever the ‘hf-enabled’ class name is present.

238

A-18.3.10 Field Styling

The Hosted Payment Fields are styled using CSS as normal.

However, styles have to be transferred from your website to the controls served from our website,
therefore styles must be isolated and easily identifiable. To aid with identification, all styles
intended for a Field must contain the ‘hostedfield’ class name in their selector or ‘-hostedfield’

extension on any id in the selector.

As a website may contain lots of stylesheets, a Field cannot be expected to parse every

stylesheet present on the page and therefore it only parses those selected using the stylesheets
construction option or using the setStylesheet() method. By default, this is any stylesheet

referenced via a <link> tag or <style> tag with the ‘hostedfield’ class name: ie any HTML node that
matches the following DOM selector ‘link.hostedfield[rel=stylesheet], style.hostedfield'.

CSS styles using the Field state classes, pseudo classes and pseudo elements are supported as

follows:

• :focus

• .hf-focus

• :hover

• .hf-hover

• :enabled

• .hf-enabled,

• :disabled

• .hf-disabled

• :valid

• .hf-valid

• :invalid

• .hf-invalid

• :user-valid

• .hf-user-valid

• :user-invalid

• .hf-user-invalid

• :required

• .hf-required

• :optional

• .hf-optional

• :empty

• .hf-empty

• :complete

• .hf-complete

• :autofill

• .hf-autofill

• :placeholder-shown

• .hf-placeholder-
shown

• :readonly

• .hf-readonly

• :readwrite

• .hf-readwrite

• :-webkit-auto-fill

• .hf-icon

• ::placeholder

• ::-moz-placeholder

• ::-webkit-input-
placeholder

• ::-ms-input-
placeholder

The styles can contain any valid CSS rules and will be used to style both the public elements and
internal private elements. For security only, styles that relate to the textual representation of the
Field are passed to the internal private elements. This include styles such as colours, font

weights and text decorations. At present, it is not possible to specify custom fonts as they would
require the font files to be available on our servers.

239

The following styles can be used to style the Field internal private elements:

• caret-color

• color

• cursor

• direction

• fill

• filter

• font

• font-family

• font-feature-
settings

• font-kerning

• font-language-
override

• font-size

• font-size-adjust

• font-smooth

• font-stretch

• font-style

• font-synthesis

• font-variant

• font-variant-
alternates

• font-variant-caps

• font-variant-east-
asian

• font-variant-
ligatures

• font-variant-
numeric

• font-variant-
position

• font-weight

• letter-spacing

• line-height

• stroke

• text-align

• text-decoration

• text-decoration-
color

• text-decoration-
line

• text-decoration-
style

• text-emphasis

• text-emphasis-
color

• text-emphasis-
position

• text-emphasis-
style

• text-indent

• text-rendering

• text-shadow

• text-transform

• text-underline-
position

• -moz-osx-font-
smoothing

• -webkit-font-
smoothing

• -webkit-text-fill-
color

The ‘.hf-icon’ class name can be used to target the icon sub element in a cardDetails Field.

Individual controls can be targeted by using DOM ids, which will have a ‘-hostedfield’ extension
added to the DOM id of the original element.

It is advisable to keep CSS selectors and rules as simple as possible to avoid styling errors
caused by a failure to parse and filter the rules.

240

Example stylesheet:

1. <style class="hostedfield">

2. /*

3. * Style hosted field internals

4. * - only accept font, foreground and background styling

5. */

6.

7. /* Copy of Bootstrap styles */

8. .hostedfield:disabled {

9. cursor: not-allowed;

10. background-color: #eee;

11. opacity: 1;

12. }

13.

14. /* Change text to red when invalid */

15. .form-control:invalid,

16. .hostedfield:invalid {

17. border-color: #a94442 !important;

18. color: #a94442 !important;

19. }

20.

21. /* Change text to light grey when readonly */

22. .form-control:readonly,

23. .hostedfield:readonly {

24. color: lightgrey !important;

25. }

26.

27. /* Emulate webkit auto fill style */

28. .form-control.hf-autofill,

29. .hostedfield.hf-autofill {

30. background-color: rgb(250, 255, 189) !important;

31. background-image: none !important;

32. color: rgb(0, 0, 0) !important;

33. }

34.

35. /* Add pink placeholder */

36. .form-control::placeholder,

37. .hostedfield::placeholder {

38. color: pink;

39. }

40.

41. /* Show hovering over the control */

42. .form-control.hf-hover,

43. .hostedfield.hf-hover {

44. font-style: italic;

45. }

46.

47. /* Style by id (hosted field will have '-hostedfield' appended to the id) */

48. #form1-card-details.hostedfield, #form1-card-details-hostedfield {

49. color: blue;

50. }

51.

52. </style>

241

A-18.3.11 jQuery Plugin

The script will extend the jQuery object with its own plugin methods to allow easy access to Form

and Field objects attached to an element as follows:

$(element).hostedForm(options);
$(element).hostedForm(‘instance’);
$(element).hostedForm(‘options’, options);
$(element).hostedForm(method, parameters);
$(element).hostedForm(‘destroy’);

$(element).hostedField(options);
$(element).hostedField(‘instance’);
$(element).hostedField(‘options’, options);
$(element).hostedField(method, parameters);
$(element).hostedField(‘destroy’);

The script will also add a ‘:hostedfield’ pseudo selector allowing Field elements to be selected

using the following example notation:

$(‘INPUT:hostedfield’)

:

242

A-19 Example HTTP Requests

A-19.1 Hosted Integration

A-19.1.1 Transaction Request HTTP Headers

The following HTTP headers are sent for transaction request:

HTTP Header Mandatory Description

content-type Y Content type of the request. This must be ‘application/x-www-form-
urlencoded’, A charset parameter is optional and any non UTF-8
request will be converted to UTF-8.

A-19.1.2 Transaction Response HTTP Headers

The following HTTP headers are received for a transaction response:

HTTP header Description

Status HTTP status header. Possible value are:
200 – Transaction request processed
500 – Internal Server Error
503 – Service Temporarily Unavailable

content-type Content type of the response. This will be ‘application/x-www-form-urlencoded’

243

A-19.1.3 Submission Example

The following shows an example of a transaction request:

1. HTTP/1.1 200 OK

2. POST /hosted/ HTTP/1.1

3. Host: gateway.example.com

4. Accept: */*

5. Content-Length: 314

6. Content-Type: application/x-www-form-urlencoded

7.

8. merchantID=100001&action=SALE&type=1¤cyCode=826&countryCode=826&amount=680&transactionUnique=5de651c7c537

9&orderRef=Test+Transaction&redirectURL=https%3A%2F%2Fmyshop.com&signature=ba12b0766a3412782448f154be15e8f61eea

390387b1b23d4688c82c9f28f81df593de5890426546cca365943cc7b5c4897c9721b663a0e17680e1e796f1ad55

The following shows an example of a transaction response:

1. HTTP/1.1 200 OK

2. Date: Tue, 01 Jan 2019 09:30:45 GMT

3. Server: Apache/2.4.23 (Win64) OpenSSL/1.0.2k-fips PHP/5.4.12

4. Vary: Host

5. X-Powered-By: PHP/5.4.12

6. Expires: Thu, 19 Nov 1981 08:52:00 GMT

7. Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

8. Pragma: no-cache

9. Content-Length: 4129

10. Content-Type: text/html

11.

12. <!DOCTYPE html>

13. <html>

14. --- Hosted Payment Page HTML Removed ---

15. </html>

244

A-19.2 Direct Integration

A-19.2.1 Transaction Request HTTP Headers

The following HTTP headers are sent for transaction request:

HTTP Header Mandatory Description

content-type Y Content type of the request. This must be ‘application/x-www-form-
urlencoded’, A charset parameter is optional and any none UTF-8
request will be converted to UTF-8.

A-19.2.2 Transaction Response HTTP Headers

The following HTTP headers are received for a transaction response:

HTTP header Description

Status HTTP status header. Possible value are:
200 – Hosted Payment Form returned
500 – Internal Server Error
503 – Service Temporarily Unavailable

content-type Content type of the response. This will be ‘text/html’

245

A-19.2.3 Submission Example

The following shows an example of a transaction request:

1. POST /direct/ HTTP/1.1

2. Host: gateway.example.com

3. Accept: */*

4. Content-Length: 397

5. Content-Type: application/x-www-form-urlencoded

6.

7. merchantID=100001&action=SALE&type=1¤cyCode=826&countryCode=826&amount=680&transactionUnique=5de65b552499

e&orderRef=Test+Transaction&cardNumber=4929+4212+3460+0821&cardCVV=356&cardExpiryDate=1219&threeDSRequired=N&av

scv2CheckRequired=N&duplicateDelay=0&signature=06b01e06c8fc761943d676d5f3aa2e9264758fed72e7bcb058a2a35cf23e8e45

403099537bb0363054d6bc8ea951ce1ad86e582dbf0b435855b9c97507fcf844

The following shows an example of a transaction response:

1. HTTP/1.1 200 OK

2. Date: Tue, 01 Jan 2019 09:30:45 GMT

3. Server: Apache/2.4.23 (Win64) OpenSSL/1.0.2k-fips PHP/5.4.12

4. Vary: Host

5. X-Powered-By: PHP/5.4.12

6. Content-Length: 2532

7. Content-Type: text/html

8.

9. merchantID=100001&threeDSEnabled=Y&avscv2CheckEnabled=Y&riskCheckEnabled=N&caEnabled=Y&rtsEnabled=Y&cftEnabled=

Y&threeDSCheckPref=not+known%2Cnot+checked%2Cauthenticated%2Cattempted+authentication&cv2CheckPref=matched&addr

essCheckPref=not+known%2Cnot+checked%2Cmatched%2Cpartially+matched&postcodeCheckPref=not+known%2Cnot+checked%2C

matched%2Cpartially+matched&cardCVVMandatory=Y&riskCheckPref=not+known%3Dfinished%2Cnot+checked%3Ddecline2%2Cap

prove%3Dcontinue%2Cdecline%3Ddecline1%2Creview%3Ddecline2%2Cescalate%3Dfinished¬ifyEmail=an.operator%40merch

ant.com&customerReceiptsRequired=Y&eReceiptsEnabled=Y&eReceiptsApiKey=C282ZTF885MN0BPL80Q3&eReceiptsStoreID=2&m

erchantCategoryCode=6013&surchargeEnabled=Y&surchargeRequired=N&surchargeRules%5B0%5D%5BcardType%5D=CC&surcharg

eRules%5B0%5D%5Bsurcharge%5D=10.1235&surchargeRules%5B1%5D%5BcardType%5D=CC&surchargeRules%5B1%5D%5Bcurrency%5D

=GBP&surchargeRules%5B1%5D%5Bsurcharge%5D=2.5000&surchargeRules%5B2%5D%5BcardType%5D=VC&surchargeRules%5B2%5D%5

Bsurcharge%5D=3.5000&surchargeRules%5B3%5D%5BcardType%5D=VC&surchargeRules%5B3%5D%5Bcurrency%5D=GBP&surchargeRu

les%5B3%5D%5Bsurcharge%5D=4.5000&surchargeRules%5B4%5D%5BcardType%5D=DD&surchargeRules%5B4%5D%5Bsurcharge%5D=5.

5000&action=SALE&type=1¤cyCode=826&countryCode=826&amount=680&transactionUnique=5de65b552499e&orderRef=Test+Tra

nsaction&cardExpiryDate=1219&threeDSRequired=N&avscv2CheckRequired=N&duplicateDelay=0&requestID=5de65b562496f&r

esponseCode=0&responseMessage=AUTHCODE%3A347414&state=captured&requestMerchantID=100001&processMerchantID=10000

1&paymentMethod=card&cardType=Visa+Credit&cardTypeCode=VC&cardScheme=Visa+&cardSchemeCode=VC&cardIssuer=BARCLAY

S+BANK+PLC&cardIssuerCountry=United+Kingdom&cardIssuerCountryCode=GBR&cardFlags=8323072&cardNumberMask=492942%2

A%2A%2A%2A%2A%2A0821&cardNumberValid=Y&xref=19120312NG55CM51QH35JRL&cardExpiryMonth=12&cardExpiryYear=19&author

isationCode=347414&transactionID=10018201&responseStatus=0×tamp=2019-12-

03+12%3A55%3A52&amountApproved=680&amountReceived=680&amountRetained=680&avscv2ResponseCode=244100&avscv2Respon

seMessage=SECURITY+CODE+MATCH+ONLY&avscv2AuthEntity=merchant+host&cv2Check=matched&addressCheck=not+matched&pos

tcodeCheck=not+matched¬ifyEmailResponseCode=0¬ifyEmailResponseMessage=Email+successfully+queued&vcsRespon

seCode=0&vcsResponseMessage=Success+-

+no+velocity+check+rules+applied¤cyExponent=2&signature=e5c65e5d0340e0ec0de8782affcb6caba2e4d202a6873a167

7ddbf6415cb1dd52cc597e43c758b233afd121367d300a57d0faade7abf6b4b88a1a1b974e55d33

246

A-19.3 Batch Integration

A-19.3.1 Submission Request HTTP Headers

The following HTTP headers are sent for batch submission request:

HTTP Header Mandatory Description

content-type Y Content type of the batch request. This must be ‘multipart/mixed’ and
contain a boundary parameter to separate each transaction request.
A charset parameter is optional and any none UTF-8 request will be
converted to UTF-8.

content-encoding N Optional content encoding applied to the request. The value should
be a comma separated list of one or more: x-gzip, gzip, base64.

authorization N Optional username and password to authenticate the submitter

The following HTTP headers are sent on each individual part request:

HTTP Header Mandatory Description

content-type Y Content type of the individual request. This must be ‘application/x-
www-form-urlencoded’, A charset parameter is optional and any
none UTF-8 request will be converted to UTF-8.

content-encoding N Optional content encoding applied to the request. The value should
be a comma separated list of one or more: x-gzip, gzip, base64.

content-id N Optional identifier for each individual transaction with the batch. The
Gateway will return this identifier in the submission response.
If not sent, the Gateway will generate a unique identifier for each
transaction.

247

A-19.3.2 Submission Response HTTP Headers

The following HTTP headers are received for batch submission response:

HTTP header Description

status HTTP status header. Possible value are:
200 – Batch submission status response ok
201 – Batch submission received and stored
400 – Batch submission invalid
401 – Unauthorised (none or incorrect credentials)
405 – HTTP method was not POST/PUT or GET
500 – Internal Gateway error

location URL to use to monitor the status of the batch. A unique batch reference number will
be provided in the URL in the format: XXXX-XXXX-XXXX-XXXX (e.g. 1A23-B4C5-
DEF6-G7HI)

This reference number is used to request information about the status of a batch via
HTTP GET requests to the URL endpoint as outlined in section 1.3.3.

x-p3-token If user authentication was sent in the initial request, this header will contain a token
that can be used for future requests for the status of the batch instead of having to
use a username/password.

content-type Content type of the HTTP batch request. This will be ‘multipart/mixed’ and contain a
boundary parameter to separate each transaction request.

The following HTTP headers are received on each individual part response:

HTTP header Description

content-type Content type of the individual request. This will be ‘application/x-www-form-
urlencoded’, A charset parameter is optional and any none UTF-8 request will be
converted to UTF-8.

content-id The content ID sent in the initial request as outlined in A-19.3.1. If no content-id
header was sent, the Gateway will return a unique content ID per transaction.

x-transaction-id The Gateway transaction ID. This will be empty if the transaction is currently
pending in this stage.

x-transaction-response A message containing the current status of the transaction.

Possible value are:
skipped – insufficient permissions to view transaction
pending – queued for processing
success – (Response Message)
failure – (Response Message)

248

A-19.3.3 Status Request HTTP Headers

The following HTTP headers are used during a batch status request:

HTTP Header Mandatory Description

authorization Y Mandatory username and password to authenticate the submitter

A-19.3.4 Status Response HTTP Headers

The batch status response is identical to the submission status response as documented in
section A-19.3.2.

A-19.3.5 Submission Example

The following shows an example of a batch submission request:

1. PUT /batch/?validate=0 HTTP/1.1

2. Authorization: Basic bmljay50dXJuZXI6dGVzdGluZzI=

3. Host: gateway.example.com

4. Accept: */*

5. Content-type: multipart/mixed; charset=UTF-8; boundary=5de63a42507a9

6. Content-length: 1404

7.

8. --5de63a42507a9

9. Content-Id: TX5de63a42507ac

10. Content-Type: application/x-www-form-urlencoded; charset=UTF-8

11.

12. merchantID=100001&action=SALE&type=1¤cyCode=826&countryCode=826&amount=680&transactionUnique=5de63a42507a

c&orderRef=Test+Transaction&cardNumber=4929+4212+3460+0821&cardExpiryDate=1219&duplicateDelay=0&signature=3cd68

6fdd40449ef33534baa62732c95fc127ff591fae3b5b611ccb38573ad921d199396e27cffd14faa4f46df8dde310252920fd1b33607b029

b9b6ff669e2b

13.

14. --5de63a42507a9

15. Content-Id: TX5de63a42af062

16. Content-Type: application/x-www-form-urlencoded; charset=UTF-8

17.

18. merchantID=100001&action=SALE&type=1¤cyCode=826&countryCode=826&amount=681&transactionUnique=5de63a42af06

2&orderRef=Test+Transaction&cardNumber=4929+4212+3460+0821&cardExpiryDate=1219&duplicateDelay=0&signature=55f41

1d40954be7f7089e84fe489438f09fc1b37c0964e46b0fab8bdcb44e13ed3ea11b9deb9da89a6d7b45133709a126bd3581f6329bf888b83

231184597231

19.

20. --5de63a42507a9

21. Content-Id: TX5de63a42ca9cd

22. Content-Type: application/x-www-form-urlencoded; charset=UTF-8

23.

24. merchantID=100001&action=SALE&type=1¤cyCode=826&countryCode=826&amount=682&transactionUnique=5de63a42ca9c

d&orderRef=Test+Transaction&cardNumber=4929+4212+3460+0821&cardExpiryDate=1219&duplicateDelay=0&signature=c2962

66cb9bc8082957c700da9651d98add176dd8bd62eb3b7098566c7d8e23a3426b776de815e99149c6681978b1addedac762339563732d8a4

49b6cca3a3c2

25.

26. --5de63a42507a9--

249

The following shows an example of a batch submission response:

1. HTTP/1.1 201 Created

2. Date: Tue, 01 Jan 2019 09:30:45 GMT

3. Server: Apache/2.4.23 (Win64) OpenSSL/1.0.2k-fips PHP/5.4.12

4. X-Powered-By: PHP/5.4.12

5. x-p3-token: YTo1OntzOjc6InZlcnNpb24iO3M6ODoiUDNUSy8yLjAiO3M6NzoicHVycG9zZSI7czo0OiJhdXRoIjtzOjc6ImNyZWF0b3IiO3M

6NToiQkFUQ0giO3M6NzoiY3JlYXRlZCI7aToxNTc1MzY5Mjg1O3M6NzoiZXhwaXJlcyI7aToxNTc1MzcyODg1O30.czozOiI2MjkiOw.zdfxxXY

tC2Wc4yyk-lEos-wZ99pEJtPGYpXR4KCiWW_56nmOysarOaMucrWPIt-NzwFzgq3-7u4Ud6uYkQcWBQ

6. Location: /batch/2D6D-AC2C-BF55-2A8C

7. Content-disposition: attachment; filename="batch-2D6D-AC2C-BF55-2A8C"

8. Content-Length: 1857

9. Content-Type: multipart/mixed; charset=UTF-8; boundary=5de63a5c1a071

10.

11. Transaction 'TX5de63a42507ac' - pending - queued for processing

12. Transaction 'TX5de63a42af062' - pending - queued for processing

13. Transaction 'TX5de63a42ca9cd' - pending - queued for processing

14.

15. --5de63a5c1a071

16. Content-Id: TX5de63a42507ac

17. Content-Type: application/x-www-form-urlencoded; charset=UTF-8

18. X-Transaction-ID:

19. X-Transaction-Response: pending - queued for processing

20.

21. merchantID=100001&action=SALE&type=1¤cyCode=826&countryCode=826&amount=680&transactionUnique=5de63a42507ac&orde

rRef=Test+Transaction&cardNumber=492942%2A%2A%2A%2A%2A%2A0821&cardExpiryDate=1219&duplicateDelay=0&signature=03

84bbf6ca0fc153e1e27a0cfc51f3b1cd1c2cff7a49aa4e9439bba38262183e9ac7d156f218eba1ef8d04f9e6a7fa6fbc9c2b3ab990c70e0

6dc7c6923e5b27b

22.

23. --5de63a5c1a071

24. Content-Id: TX5de63a42af062

25. Content-Type: application/x-www-form-urlencoded; charset=UTF-8

26. X-Transaction-ID:

27. X-Transaction-Response: pending - queued for processing

28.

29. merchantID=100001&action=SALE&type=1¤cyCode=826&countryCode=826&amount=681&transactionUnique=5de63a42af062&orde

rRef=Test+Transaction&cardNumber=492942%2A%2A%2A%2A%2A%2A0821&cardExpiryDate=1219&duplicateDelay=0&signature=1e

13e23c2b90a30f4403d604ac20302b5504b886b0b5c9ace0764fc8d966d120f5a1beca975805292780c22953b4e6ca71f67f499804f19d2

718518463a598c4

30.

31. --5de63a5c1a071

32. Content-Id: TX5de63a42ca9cd

33. Content-Type: application/x-www-form-urlencoded; charset=UTF-8

34. X-Transaction-ID:

35. X-Transaction-Response: pending - queued for processing

36.

37. merchantID=100001&action=SALE&type=1¤cyCode=826&countryCode=826&amount=682&transactionUnique=5de63a42ca9cd&orde

rRef=Test+Transaction&cardNumber=492942%2A%2A%2A%2A%2A%2A0821&cardExpiryDate=1219&duplicateDelay=0&signature=c4

56aa211f8e3e568a40051bfd38406be02566fcd72d3bb1547f4d43e75db1d069eaa4158aa035337cac084633df945a13471db6b1a3fcd6c

0749626d9bc0044

38.

39. --5de63a5c1a071--

250

A-20 Example Integration Code
The follow section provides samples of how to integrate with the Gateway using the PHP scripting
language to communicate directly with the API without the use of any our SDKs.

A-20.1 Hosted Integration

A-20.1.1 Sale Transaction

The following example PHP code shows how to send a SALE transaction:

1. <?PHP

2.

3. // Signature key entered on MMS. The demo account is fixed to this value,

4. $key = 'Circle4Take40Idea';

5.

6. // Gateway URL

7. $url = 'https://gateway.example.com/hosted/';

8.

9.

10. if (!isset($_POST['responseCode'])) {

11. // Send request to gateway

12.

13. // Request

14. $req = array(

15. 'merchantID' => '100001',

16. 'action' => 'SALE',

17. 'type' => 1,

18. 'countryCode' => 826,

19. 'currencyCode' => 826,

20. 'amount' => 1001,

21. 'orderRef' => 'Test purchase',

22. 'transactionUnique' => uniqid(),

23. 'redirectURL' => ($_SERVER['HTTPS'] == 'on' ? 'https' : 'http') . '://' . $_SERVER['HTTP_HOST'] . $_SER

VER['REQUEST_URI'],

24.);

25.

26. // Create the signature using the function called below.

27. $req['signature'] = createSignature($req, $key);

28.

29. echo '<form action="' . htmlentities($url) . '" method="post">' . PHP_EOL;

30.

31. foreach ($req as $field => $value) {

32. echo ' <input type="hidden" name="' . $field . '" value="' . htmlentities($value) . '">' . PHP_EOL;

33. }

34.

35. echo ' <input type="submit" value="Pay Now">' . PHP_EOL;

36. echo '</form>' . PHP_EOL;

37.

38. // Check the return signature

39. if (!$signature || $signature !== createSignature($res, $key)) {

40. // You should exit gracefully

41. die('Sorry, the signature check failed');

42. }

43.

44. // Check the response code

45. if ($res['responseCode'] === "0") {

46. echo "<p>Thank you for your payment.</p>";

47. } else {

48. echo "<p>Failed to take payment: " . htmlentities($res['responseMessage']) . "</p>";

49. }

50.

51. }

52.

251

53. // Function to create a message signature

54. function createSignature(array $data, $key) {

55. // Sort by field name

56. ksort($data);

57.

58. // Create the URL encoded signature string

59. $ret = http_build_query($data, '', '&');

60.

61. // Normalise all line endings (CRNL|NLCR|NL|CR) to just NL (%0A)

62. $ret = str_replace(array('%0D%0A', '%0A%0D', '%0D'), '%0A', $ret);

63.

64. // Hash the signature string and the key together

65. return hash('SHA512', $ret . $key);

66. }

67.

68. ?>

252

A-20.2 Direct Integration

A-20.2.1 Sale Transaction (with 3-D Secure)

The following example PHP code shows how to send a SALE transaction with support for 3-D
Secure:

1. <?PHP

2.

3. // Signature key entered on MMS. The demo account is fixed to this value,

4. $key = 'Circle4Take40Idea';

5.

6. // Gateway URL

7. $url = 'https://gateway.example.com/direct/';

8.

9. // Request

10. $req = array(

11. 'merchantID' => '100856',

12. 'action' => 'SALE',

13. 'type' => 1,

14. 'countryCode' => 826,

15. 'currencyCode' => 826,

16. 'amount' => 1001,

17. 'cardNumber' => '4012001037141112',

18. 'cardExpiryMonth' => 12,

19. 'cardExpiryYear' => 15,

20. 'cardCVV' => '083',

21. 'customerName' => 'Test Customer',

22. 'customerEmail' => 'test@testcustomer.com',

23. 'customerAddress' => '16 Test Street',

24. 'customerPostCode' => 'TE15 5ST',

25. 'orderRef' => 'Test purchase',

26. 'transactionUnique' => (isset($_POST['transactionUnique']) ? $_POST['transactionUnique'] : uniqid()),

27. 'threeDSMD' => (isset($_POST['MD']) ? $_POST['MD'] : null),

28. 'threeDSPaRes' => (isset($_POST['PaRes']) ? $_POST['PaRes'] : null),

29. 'threeDSPaReq' => (isset($_POST['PaReq']) ? $_POST['PaReq'] : null)

30.);

31.

32. // Create the signature using the function called below.

33. $req['signature'] = createSignature($req, $key);

34.

35. // Initiate and set curl options to post to the gateway

36. $ch = curl_init($url);

37. curl_setopt($ch, CURLOPT_POST, true);

38. curl_setopt($ch, CURLOPT_POSTFIELDS, http_build_query($req));

39. curl_setopt($ch, CURLOPT_HEADER, false);

40. curl_setopt($ch, CURLOPT_FOLLOWLOCATION, true);

41. curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

42.

43. // Send the request and parse the response

44. parse_str(curl_exec($ch), $res);

45.

46. // Close the connection to the gateway

47. curl_close($ch);

48. // Extract the return signature as this isn't hashed

49. $signature = null;

50. if (isset($res['signature'])) {

51. $signature = $res['signature'];

52. unset($res['signature']);

53. }

54.

55. // Check the return signature

56. if (!$signature || $signature !== createSignature($res, $key)) {

57. // You should exit gracefully

58. die('Sorry, the signature check failed');

59. }

253

60.

61. // Check the response code

62. if ($res['responseCode'] == 65802) {

63.

64. // Send details to 3D Secure ACS and the return here to repeat request

65. $pageUrl = (@$_SERVER['HTTPS'] == 'on') ? 'https://' : 'http://';

66. if ($_SERVER['SERVER_PORT'] != '80') {

67. $pageUrl .= $_SERVER['SERVER_NAME'] . ':' . $_SERVER['SERVER_PORT'] . $_SERVER['REQUEST_URI'];

68. } else {

69. $pageUrl .= $_SERVER['SERVER_NAME'] . $_SERVER['REQUEST_URI'];

70. }

71.

72. echo "

73. <p>Your transaction requires 3D Secure Authentication</p>

74. <form action=\"" . htmlentities($res['threeDSACSURL']) . "\"method=\"post\">

75. <input type=\"hidden\" name=\"MD\" value=\"" . htmlentities($res['threeDSMD']) . "\">

76. <input type=\"hidden\" name=\"PaReq\" value=\"" . htmlentities($res['threeDSPaReq']) . "\">

77. <input type=\"hidden\" name=\"TermUrl\" value=\"" . htmlentities($pageUrl) . "\">

78. <input type=\"submit\" value=\"Continue\">

79. </form>

80. ";

81.

82. } else if ($res['responseCode'] === "0") {

83. echo "<p>Thank you for your payment.</p>";

84. } else {

85. echo "<p>Failed to take payment: " . htmlentities($res['responseMessage']) . "</p>";

86. }

87.

88. // Function to create a message signature

89. function createSignature(array $data, $key) {

90. // Sort by field name

91. ksort($data);

92.

93. // Create the URL encoded signature string

94. $ret = http_build_query($data, '', '&');

95.

96. // Normalise all line endings (CRNL|NLCR|NL|CR) to just NL (%0A)

97. $ret = str_replace(array('%0D%0A', '%0A%0D', '%0D'), '%0A', $ret);

98.

99. // Hash the signature string and the key together

100. return hash('SHA512', $ret . $key);

101. }

102.

103. ?>

254

A-20.2.2 Sale Transaction (without 3-D Secure)

The following sample PHP code shows how to send a SALE transaction without support for 3-D
Secure:

1. <?PHP

2.

3. // Signature key entered on MMS. The demo account is fixed to this value,

4. $key = 'Circle4Take40Idea';

5.

6. // Gateway URL

7. $url = 'https://gateway.example.com/direct/';

8.

9. // Request

10. $req = array(

11. 'merchantID' => '100001',

12. 'action' => 'SALE',

13. 'type' => 1,

14. 'countryCode' => 826,

15. 'currencyCode' => 826,

16. 'amount' => 1001,

17. 'cardNumber' => '4012001037141112',

18. 'cardExpiryMonth' => 12,

19. 'cardExpiryYear' => 15,

20. 'cardCVV' => '083',

21. 'customerName' => 'Test Customer',

22. 'customerEmail' => 'test@testcustomer.com',

23. 'customerPhone' => '+44 (0) 123 45 67 890',

24. 'customerAddress' => '16 Test Street',

25. 'customerPostCode' => 'TE15 5ST',

26. 'orderRef' => 'Test purchase',

27. 'transactionUnique' => uniqid(),

28.);

29.

30. // Create the signature using the function called below.

31. $req['signature'] = createSignature($req, $key);

32.

33. // Initiate and set curl options to post to the gateway

34. $ch = curl_init($url);

35. curl_setopt($ch, CURLOPT_POST, true);

36. curl_setopt($ch, CURLOPT_POSTFIELDS, http_build_query($req));

37. curl_setopt($ch, CURLOPT_HEADER, false);

38. curl_setopt($ch, CURLOPT_FOLLOWLOCATION, true);

39. curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

40.

41. // Send the request and parse the response

42. parse_str(curl_exec($ch), $res);

43.

44. // Close the connection to the gateway

45. curl_close($ch);

46.

47. // Extract the return signature as this isn't hashed

48. $signature = null;

49. if (isset($res['signature'])) {

50. $signature = $res['signature'];

51. unset($res['signature']);

52. }

53.

54. // Check the return signature

55. if (!$signature || $signature !== createSignature($res, $key)) {

56. // You should exit gracefully

57. die('Sorry, the signature check failed');

58. }

59.

60. // Check the response code

61. if ($res['responseCode'] === "0") {

255

62. echo "<p>Thank you for your payment.</p>";

63. } else {

64. echo "<p>Failed to take payment: " . htmlentities($res['responseMessage']) . "</p>";

65. }

66.

67. // Function to create a message signature

68. function createSignature(array $data, $key) {

69. // Sort by field name

70. ksort($data);

71.

72. // Create the URL encoded signature string

73. $ret = http_build_query($data, '', '&');

74.

75. // Normalise all line endings (CRNL|NLCR|NL|CR) to just NL (%0A)

76. $ret = str_replace(array('%0D%0A', '%0A%0D', '%0D'), '%0A', $ret);

77.

78. // Hash the signature string and the key together

79. return hash('SHA512', $ret . $key);

80. }

81.

82. ?>

256

A-20.3 Batch Integration

A-20.3.1 Batch Submission

The following example PHP code shows how to send a batch request containing three SALE
transactions:

1. <?PHP

2.

3. // Signature key entered on MMS. The demo account is fixed to this value,

4. $key = 'Circle4Take40Idea';

5.

6. // Gateway URL

7. $url = 'https://gateway.example.com/batch/';

8.

9. // Create a unique multipart boundary

10. $boundary = uniqid();

11.

12. // Requests

13. $reqs = array(

14. array(

15. 'merchantID' => 100001,

16. 'action' => 'SALE',

17. 'type' => 1,

18. 'currencyCode' => 826,

19. 'countryCode' => 826,

20. 'amount' => 1001,

21. 'cardNumber' => '4012001037141112',

22. 'cardExpiryMonth' => 12,

23. 'cardExpiryYear' => 15,

24. 'cardCVV' => '083',

25. 'customerName' => 'Test Customer',

26. 'customerEmail' => 'test@testcustomer.com',

27. 'customerAddress' => '16 Test Street',

28. 'customerPostCode' => 'TE15 5ST',

29. 'orderRef' => 'Test purchase',

30. 'transactionUnique' => uniqid(),

31. 'threeDSRequired' => 'N',

32. 'avscv2CheckRequired' => 'N',

33.),

34. array(

35. 'merchantID' => 100001,

36. 'action' => 'SALE',

37. 'type' => 1,

38. 'currencyCode' => 826,

39. 'countryCode' => 826,

40. 'amount' => 2002,

41. 'cardNumber' => '4012001037141112',

42. 'cardExpiryMonth' => 12,

43. 'cardExpiryYear' => 15,

44. 'cardCVV' => '083',

45. 'customerName' => 'Test Customer',

46. 'customerEmail' => 'test@testcustomer.com',

47. 'customerAddress' => '16 Test Street',

48. 'customerPostCode' => 'TE15 5ST',

49. 'orderRef' => 'Test purchase',

50. 'transactionUnique' => uniqid(),

51. 'threeDSRequired' => 'N',

52. 'avscv2CheckRequired' => 'N',

53.),

54. array(

55. 'merchantID' => 100001,

56. 'action' => 'SALE',

57. 'type' => 1,

58. 'currencyCode' => 826,

59. 'countryCode' => 826,

257

60. 'amount' => 3003,

61. 'cardNumber' => '4012001037141112',

62. 'cardExpiryMonth' => 12,

63. 'cardExpiryYear' => 15,

64. 'cardCVV' => '083',

65. 'customerName' => 'Test Customer',

66. 'customerEmail' => 'test@testcustomer.com',

67. 'customerAddress' => '16 Test Street',

68. 'customerPostCode' => 'TE15 5ST',

69. 'orderRef' => 'Test purchase',

70. 'transactionUnique' => uniqid(),

71. 'threeDSRequired' => 'N',

72. 'avscv2CheckRequired' => 'N',

73.),

74.);

75.

76. // Create the batch parts

77. $parts = array();

78. foreach ($reqs as $req) {

79.

80. // Create the signature using the function called below.

81. $req['signature'] = createSignature($req, $key);

82.

83. $parts[] =

84. "Content-Id: TX{$req['transactionUnique']}\r\n" .

85. "Content-Type: application/x-www-form-urlencoded; charset=\"UTF-8\"\r\n" .

86. "\r\n" .

87. http_build_query($req);

88. }

89.

90. // Join the parts together separated by the boundary string

91. $post = "\r\n--{$boundary}\r\n" . join("\r\n--{$boundary}\r\n", $parts) . "\r\n--{$boundary}--\r\n";

92.

93. // Initiate and set curl options to post to the gateway

94. $ch = curl_init($url);

95. curl_setopt($ch, CURLOPT_POST, true);

96. curl_setopt($ch, CURLOPT_POSTFIELDS, $post);

97. curl_setopt($ch, CURLOPT_HEADER, true);

98. curl_setopt($ch, CURLOPT_FOLLOWLOCATION, true);

99. curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

100. curl_setopt($ch, CURLOPT_HTTPHEADER, array(

101. 'Content-type: multipart/mixed; charset="UTF-8"; boundary=' . $boundary,

102. 'Content-length: ' . strlen($post),

103.));

104.

105. // Send the request

106. $res = curl_exec($ch);

107.

108. // Normally would process the response here, but for this example just echo it out

109. header ('Content-Type: text/plain');

110. echo $res . PHP_EOL;

111.

112. // Close the connection to the gateway

113. curl_close($ch);

114.

115. // Function to create a message signature

116. function createSignature(array $data, $key) {

117. // Sort by field name

118. ksort($data);

119.

120. // Create the URL encoded signature string

121. $ret = http_build_query($data, '', '&');

122.

123. // Normalise all line endings (CRNL|NLCR|NL|CR) to just NL (%0A)

124. $ret = str_replace(array('%0D%0A', '%0A%0D', '%0D'), '%0A', $ret);

125.

126. // Hash the signature string and the key together

258

127. return hash('SHA512', $ret . $key);

128. }

129.

130. ?>

259

A-21 Example Library Code
The follow section provides samples of how to integrate with the Gateway using our integration
libraries as documented in section A-18.1.

A-21.1 Gateway Integration Library

A-21.1.1 Hosted Sale Transaction

The following example PHP code shows how to send a SALE transaction using the Gateway
library:

1. <?PHP

2. require('gateway.php');

3.

4. use \P3\SDK\Gateway;

5.

6. // Signature key entered on MMS. The demo account is fixed to this value,

7. Gateway::$merchantSecret = 'Circle4Take40Idea';

8.

9. // Gateway URL

10. Gateway::$hostedUrl = 'https://gateway.example.com/hosted/';

11.

12. if (!isset($_POST['responseCode'])) {

13. // Send request to gateway

14. $req = array(

15. 'merchantID' => 100001,

16. 'action' => 'SALE',

17. 'type' => 1,

18. 'currencyCode' => 826,

19. 'countryCode' => 826,

20. 'amount' => 1001,

21. 'orderRef' => 'Test purchase',

22. 'redirectURL' => ($_SERVER['HTTPS'] == 'on' ? 'https' : 'http') . '://' . $_SERVER['HTTP_HOST'] . $_SER

VER['REQUEST_URI'],

23.);

24.

25. try {

26. echo Gateway::hostedRequest($req);

27. } catch (\Exception $e) {

28. // You should exit gracefully

29. die('Sorry, the request could not be sent: ' . $e);

30. }

31.

32. } else {

33. // Received response from gateway

34. try {

35. Gateway::verifyResponse($_POST);

36. } catch(\Exception $e) {

37. // You should exit gracefully

38. die('Sorry, the request could not be sent: ' . $e);

39. }

40.

41. // Check the response code

42. if ($_POST['responseCode'] === 0) {

43. echo "<p>Thank you for your payment.</p>";

44. } else {

45. echo "<p>Failed to take payment: " . htmlentities($_POST['responseMessage']) . "</p>";

46. }

47. }

48.

49. ?>

260

A-21.1.2 Direct Sale Transaction (with 3-D Secure)

The following example PHP code shows how to send a SALE transaction with support for 3-D
Secure using the Gateway library:

1. <?PHP

2.

3. require('gateway.php');

4.

5. use \P3\SDK\Gateway;

6.

7. // Signature key entered on MMS. The demo account is fixed to this value,

8. Gateway::$merchantSecret = 'Circle4Take40Idea';

9.

10. // Gateway URL

11. Gateway::$directUrl = 'https://gateway.example.com/direct/';

12.

13. // Requests

14. $req = array(

15. 'merchantID' => 100001,

16. 'action' => 'SALE',

17. 'type' => 1,

18. 'currencyCode' => 826,

19. 'countryCode' => 826,

20. 'amount' => 1001,

21. 'cardNumber' => '4012001037141112',

22. 'cardExpiryMonth' => 12,

23. 'cardExpiryYear' => 15,

24. 'cardCVV' => '083',

25. 'customerName' => 'Test Customer',

26. 'customerEmail' => 'test@testcustomer.com',

27. 'customerAddress' => '16 Test Street',

28. 'customerPostCode' => 'TE15 5ST',

29. 'orderRef' => 'Test purchase',

30. 'threeDSMD' => (isset($_POST['MD']) ? $_POST['MD'] : null),

31. 'threeDSPaRes' => (isset($_POST['PaRes']) ? $_POST['PaRes'] : null),

32. 'threeDSPaReq' => (isset($_POST['PaReq']) ? $_POST['PaReq'] : null)

33.);

34.

35. try {

36. $res = Gateway::directRequest($req);

37. } catch (\Exception $e) {

38. // You should exit gracefully

39. die('Sorry, the required could not be sent: ' . $e);

40. }

41.

42. // Check the response code

43. if ($res['responseCode'] === 65802) {

44.

45. // Send details to 3D Secure ACS and the return here to repeat request

46. $pageUrl = (@$_SERVER['HTTPS'] == 'on') ? 'https://' : 'http://';

47. if ($_SERVER['SERVER_PORT'] != '80') {

48. $pageUrl .= $_SERVER['SERVER_NAME'] . ':' . $_SERVER['SERVER_PORT'] . $_SERVER['REQUEST_URI'];

49. } else {

50. $pageUrl .= $_SERVER['SERVER_NAME'] . $_SERVER['REQUEST_URI'];

51. }

52.

53. echo "

54. <p>Your transaction requires 3D Secure Authentication</p>

55. <form action=\"" . htmlentities($res['threeDSACSURL']) . "\"method=\"post\">

56. <input type=\"hidden\" name=\"MD\" value=\"" . htmlentities($res['threeDSMD']) . "\">

57. <input type=\"hidden\" name=\"PaReq\" value=\"" . htmlentities($res['threeDSPaReq']) . "\">

58. <input type=\"hidden\" name=\"TermUrl\" value=\"" . htmlentities($pageUrl) . "\">

59. <input type=\"submit\" value=\"Continue\">

60. </form>

61. ";

261

62.

63. } else if ($res['responseCode'] === 0) {

64. echo "<p>Thank you for your payment.</p>";

65. } else {

66. echo "<p>Failed to take payment: " . htmlentities($res['responseMessage']) . "</p>";

67. }

68.

69. ?>

262

A-21.2 Hosted Payment Page Library

A-21.2.1 Hosted Sale Transaction

The following example code shows how to prepare a payment form to open the Hosted Payment
Page in a lightbox style overlay on your website using the Hosted Payment Page library:

1. <html>

2. <head>

3. <!-- Load the Hosted Payment Page library -->

4. <script src="https://gateway.example.com/sdk/web/v1/js/hostedforms.min.js"></script>

5. </head>

6. <body>

7. <!--

8. Hosted Payment <form> as created by the Gateway Integration Library hostedRequest() method

9. with addition of 'data-hostedforms-modal' attribute to signify a modal form is required.

10. -->

11. <form name="payment-form" method="post" action="https://gateway.example.com/hosted/" data-hostedforms-

modal>

12. <input type="hidden" name="merchantID" value="100001" />

13. <input type="hidden" name="action" value="SALE" />

14. <input type="hidden" name="type" value="1" />

15. <input type="hidden" name="currencyCode" value="826" />

16. <input type="hidden" name="countryCode" value="826" />

17. <input type="hidden" name="amount" value="1001" />

18. <input type="hidden" name="orderRef" value="Test purchase" />

19. <input type="hidden" name="redirectURL" value="https://www.merchant.com/payment/" />

20. <input type="hidden" name="signature" value="07599ef4cdb2e26cb2bf34a9c65190a7ce82494bc1df144c3bb0d20ee265

5d8278dc663b2b0421ef12b8f081e821151bb4c644277c5d65b5523a96539b53b5aa" />

21. <input type="submit" value="Pay Now">

22. </form>

23. <script>

24. // Create a new Hosted Form object which will cause the above <form> to load into a modal

25. // overlay over this page.

26. var form = new window.hostedForms.classes.Form(document.forms[0]);

27. </script>

28. </body>

29. </html>

263

A-21.2.2 Hosted Sale Transaction (jQuery)

The following example code shows how to prepare a payment form to open the Hosted Payment
Page in a lightbox style overlay on your website using the Hosted Payment Page and jQuery
libraries:

1. <html>

2. <head>

3. <!-- Load the jQuery library -->

4. <script src="https://code.jquery.com/jquery-3.4.1.min.js" integrity="sha256-

CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>

5.

6. <!-- Load the Hosted Payment Page library -->

7. <script src="https://gateway.example.com/sdk/web/v1/js/hostedforms.min.js"></script>

8. </head>

9. <body>

10. <!--

11. Hosted Payment <form> as created by the Gateway Integration Library hostedRequest() method

12. with addition of 'data-hostedforms-modal' attribute to signify a modal form is required.

13. -->

14. <form name="payment-form" method="post" action="https://gateway.example.com/hosted/" data-hostedforms-

modal>

15. <input type="hidden" name="merchantID" value="100001" />

16. <input type="hidden" name="action" value="SALE" />

17. <input type="hidden" name="type" value="1" />

18. <input type="hidden" name="currencyCode" value="826" />

19. <input type="hidden" name="countryCode" value="826" />

20. <input type="hidden" name="amount" value="1001" />

21. <input type="hidden" name="orderRef" value="Test purchase" />

22. <input type="hidden" name="redirectURL" value="https://www.merchant.com/payment/" />

23. <input type="hidden" name="signature" value="07599ef4cdb2e26cb2bf34a9c65190a7ce82494bc1df144c3bb0d20ee265

5d8278dc663b2b0421ef12b8f081e821151bb4c644277c5d65b5523a96539b53b5aa" />

24. <input type="submit" value="Pay Now">

25. </form>

26. <script>

27. // Create a new Hosted Form object which will cause the above <form> to load into a modal

28. // overlay over this page.

29. var form = $(document.forms[0]).hostedForm();

30. </script>

31. </body>

32. </html>

264

A-21.2.3 Hosted Sale Transaction #2

The following example code shows how to create a payment form to open the Hosted Payment
Page in a lightbox style overlay on your website using the Hosted Payment Page library:

1. <html>

2. <head>

3. <!-- Load the Hosted Payment Page library -->

4. <script src="https://gateway.example.com/sdk/web/v1/js/hostedforms.min.js"></script>

5. </head>

6. <body>

7. <!— Pay button placeholder -->

8. <div id="paynow"></div>

9. <script>

10. // Create a new Hosted Form object which will render a payment button which will load

11. // the Hosted Payment Pageo load into a modal overlay over this page.

12.

13. // The request can be provided from your server.

14. var req = {

15. merchantID: '100001',

16. action: 'SALE',

17. type: '1',

18. currencyCode: '826',

19. countryCode: '826',

20. amount: '1001',

21. orderRef: 'Test purchase',

22. redirectURL: 'https://www.merchant.com/payment/',

23. signature: '07599ef4cdb2e26cb2bf34a9c65190a7ce82494bc1df144c3bb0d20ee2655d8278dc663b2b0421ef12b8f081e

821151bb4c644277c5d65b5523a96539b53b5aa',

24. };

25.

26. var data = {

27. id: 'my-payment-form',

28. url: 'https://gateway.example.com/hosted/',

29. modal: true,

30. data: req,

31. submit: {

32. type: 'button',

33. label: 'Pay <i>Now</i>'

34. }

35. };

36.

37. var form = new window.hostedForms.classes.Form('paynow', data);

38. </script>

39. </body>

40. </html>

265

A-21.2.4 Hosted Sale Transaction #2 (jQuery)

The following example code shows how to create a payment form to open the Hosted Payment
Page in a lightbox style overlay on your website using the Hosted Payment Page and jQuery
libraries:

1. <html>

2. <head>

3. <!-- Load the jQuery library -->

4. <script src="https://code.jquery.com/jquery-3.4.1.min.js" integrity="sha256-

CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>

5.

6. <!-- Load the Hosted Payment Page library -->

7. <script src="https://gateway.example.com/sdk/web/v1/js/hostedforms.min.js"></script>

8. </head>

9. <body>

10. <!— Pay button placeholder -->

11. <div id="paynow"></div>

12. <script>

13. // Create a new Hosted Form object which will render a payment button which will load

14. // the Hosted Payment Pageo load into a modal overlay over this page.

15.

16. // The request can be provided from your server.

17. var req = {

18. merchantID: '100001',

19. action: 'SALE',

20. type: '1',

21. currencyCode: '826',

22. countryCode: '826',

23. amount: '1001',

24. orderRef: 'Test purchase',

25. redirectURL: 'https://www.merchant.com/payment/',

26. signature: '07599ef4cdb2e26cb2bf34a9c65190a7ce82494bc1df144c3bb0d20ee2655d8278dc663b2b0421ef12b8f081e

821151bb4c644277c5d65b5523a96539b53b5aa',

27. };

28.

29. var data = {

30. id: 'my-payment-form',

31. url: 'https://gateway.example.com/hosted/',

32. modal: true,

33. data: req,

34. submit: {

35. type: 'button',

36. label: 'Pay <i>Now</i>'

37. }

38. };

39.

40. var form = $('#paynow').hostedForm(data);

41. </script>

42. </body>

43. </html>

266

A-21.3 Hosted Payment Fields Library

The following example code shows how to create and manage Hosted Payment Fields using the
Hosted Payment Field library.

The example shows how to style fields using an inline stylesheet and how to listen and react to the
field’s events.

The example also shows how to set up the payment form both automatically and manually and
integrate with the jQuery validator plugin. You should choose the set up method best suited for
your needs and whatever validation plugin or functions you are familiar with.

Note: The example code demonstrates including the static transaction information, such as the
merchantID and amount, in hidden form fields and POSTing the form directly to the Gateway’s
Direct Integration using partial message signing. We would however recommend that you capture
just the information you require and then POST this data to your own website where you can use it
to build a new fully signed request to send to the Gateway’s Direct Integration as a server to
server request.

1. <html>

2. <head>

3. <!-- Load the jQuery library -->

4. <script src="https://code.jquery.com/jquery-3.4.1.min.js" integrity="sha256-

CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>

5.

6. <!-- Load the jQuery Validator plugin -->

7. <script src="https://cdn.jsdelivr.net/npm/jquery-validation@1.19.1/dist/jquery.validate.min.js"></script>

8.

9. <!-- Load the Hosted Payment Field library -->

10. <script src="https://gateway.example.com/sdk/web/v1/js/hostedfields.min.js"></script>

11.

12. <!-- General styles -->

13. <style>

14. body {

15. font-size: 14px;

16. }

17.

18. .form-group {

19. margin: 4px 0 15px 0;

20. }

21.

22. .form-group LABEL {

23. display: inline-block;

24. max-width: 100%;

25. margin-bottom: 5px;

26. font-weight: bold;

27. }

28.

29. .form-control {

30. display: block;

31. box-sizing: border-box;

32. height: 34px;

33. width: 400px;

34. padding: 6px 12px;

35. font-size: 14px;

36. color: #555;

37. background-color: #fff;

38. background-image: none;

39. border: 1px solid #ccc;

40. border-radius: 4px;

41. -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, .075);

267

42. box-shadow: inset 0 1px 1px rgba(0, 0, 0, .075);

43. -webkit-transition: border-color ease-in-out .15s, -webkit-box-shadow ease-in-out .15s;

44. -o-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;

45. transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s;

46. }

47.

48. .form-control.hf-focus {

49. border-color: #66afe9;

50. outline: 0;

51. -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102,175,233,.6);

52. box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102,175,233,.6);

53. }

54.

55. .has-error .form-control.hf-focus {

56. border-color: #843534;

57. -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 6px #ce8483;

58. box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 6px #ce8483;

59. }

60. </style>

61.

62. <!-- Hosted Field internal styles -->

63. <style class="hostedfield">

64. /* Grey out when disabled */

65. .hostedfield:disabled {

66. cursor: not-allowed;

67. background-color: #eee;

68. opacity: 1;

69. }

70.

71. /* Change border and text to green when valid */

72. .form-control:valid,

73. .hostedfield:valid {

74. border-color: #28a745 !important;

75. color: #28a745 !important;

76. }

77.

78. /* Change border and text to red when invalid */

79. .form-control:invalid,

80. .hostedfield:invalid {

81. border-color: #a94442 !important;

82. color: #a94442 !important;

83. }

84.

85. /* Change text to light grey when readonly */

86. .form-control:readonly,

87. .hostedfield:readonly {

88. color: lightgrey !important;

89. }

90.

91. /* Emulate webkit auto fill style */

92. .form-control.hf-autofill,

93. .hostedfield.hf-autofill {

94. background-color: rgb(250, 255, 189) !important;

95. background-image: none !important;

96. color: rgb(0, 0, 0) !important;

97. }

98.

99. /* Add light blue placeholder */

100. .form-control::placeholder,

101. .hostedfield::placeholder {

102. color: lightblue;

103. }

104.

105. /* Show hovering over the control */

106. .form-control:hover,

107. .hostedfield:hover {

108. font-style: italic;

268

109. }

110.

111. /* Style by id (hosted field will have '-hostedfield' appended to the id) */

112. #form-card-number, #form-card-number-hostedfield {

113. color: darkcyan;

114. }

115.

116. </style>

117.

118. <!-- Hosted Field card-number internal styles -->

119. <style class="card-number">

120.

121. .hostedfield::placeholder {

122. color: orange;

123. }

124.

125. </style>

126. </head>

127.

128. <body>

129. <!-- tokenise payment data and send directly to the Gateway -->

130. <form id="form" method="POST" novalidate="novalidate" lang="en"

131. action="https://gateway.example.com/direct/"

132. data-hostedform-tokenize='{"#form-customer-name": "customerName"}'>

133. <input type="hidden" name="merchantID" value="100001">

134. <input type="hidden" name="action" value="SALE">

135. <input type="hidden" name="type" value="1">

136. <input type="hidden" name="countryCode" value="826">

137. <input type="hidden" name="currencyCode" value="826">

138. <input type="hidden" name="amount" value="1001">

139. <input type="hidden" name="orderRef" value="Test purchase">

140. <input type="hidden" name="transactionUnique" value="1234">

141. <input type="hidden" name="redirectURL" value="https://www.merchant.com/payment/">

142. <input type="hidden" name="signature" value="5a0dd6fed71ef68bb3f20175b6a04bbd9d1c904d32ae3f160bd3b8f55740

207e5d1e8de5e7e9960b136407e7454b82e428b8378003aa0146df3efa91a3e61b17|merchantID,action,type,countryCode,currenc

yCode,amount,orderRef,transactionUnique,redirectURL">

143. <input type="hidden" name="paymentToken" value="">

144.

145. <div class="form-group">

146. <label for="form-customer-name">Name on card:</label>

147. <input id="form-customer-name" type="text" name="paymentToken[customerName]" autocomplete="cc-

name" class="form-control form-control-native hostedfield-tokenise" placeholder="Firstname Surname" required>

148. </div>

149.

150. <div class="form-group">

151. <label for="form-card-number">Card Number:</label>

152. <input id="form-card-number" type="hostedfield:cardNumber" name="card-number" autocomplete="cc-

number" class="form-control form-control-

hosted" style="background: #f2f8fb;" placeholder="**** **** **** ****" required>

153. </div>

154.

155. <div class="form-group">

156. <label for="form-card-expiry-date">Card Expiry Date:</label>

157. <input id="form-card-expiry-date" type="hostedfield:cardExpiryDate" name="card-expiry-

date" autocomplete="cc-exp" class="form-control form-control-hosted" required>

158. </div>

159.

160. <div class="form-group">

161. <label for="form-card-start-date">Card Issue Date:</label>

162. <input id="form-card-start-date" type="hostedfield:cardStartDate" name="card-start-

date" autocomplete="cc-iss" class="form-control form-control-hosted" data-hostedfield='{"dropdown":true}' data-

hostedfield-format="N - m | y" data-hostedfield-min-date="-40" data-hostedfeld-max-date="0">

163. </div>

164.

165. <div class="form-group">

166. <label for="form-card-cvv">CVV:</label>

269

167. <input id="form-card-cvv" type="hostedfield:cardCVV" name="card-cvv" autocomplete="cc-csc" class="form-

control form-control-hosted" required>

168. </div>

169.

170. <button id="form-submit" type="submit">Pay ▷</button>

171. </form>

172.

173. <script>

174. // This example demonstrates both automatic and manual form setup

175. var automatic_setup = true;

176.

177. $(document).ready(function () {

178.

179. var $form = $('#form');

180.

181. // Listen for events on the form to see those sent from the Hosted Payment Fields

182. // (For demonstration purposes only)

183. $form.on(events);

184.

185. if (automatic_setup) {

186. ///

187. // FORM AUTOMATIC SETUP

188. ///

189.

190. var opts = {

191. // Auto setup the form creating all hosted fields (default)

192. autoSetup: true,

193.

194. // Auto validate, tokenise and submit the form (default)

195. autoSubmit: true,

196.

197. // Optional field configuration (by type)

198. fields: {

199. any: {

200. nativeEvents: true,

201. },

202. cardNumber: {

203. selector: $('#form-card-number'),

204. style: 'text-decoration: green wavy underline;',

205. stylesheet: $('style.hostedfields, style.card-number')

206. }

207. }

208. };

209.

210. try {

211. // Create form, automatically creating all child Hosted Payment Fields

212. $form.hostedForm(opts);

213. } catch(e) {

214. showError('Failed to create hosted form: ' + e);

215. throw e; // Can't continue with this script

216. }

217.

218. // Listen for some events from the form thrown by the auto methods

219. $form.on({

220. // Let jQuery Validator check the form on submission

221. 'hostedform:presubmit': function (event) {

222. console.log('Form submitting');

223. return $form.valid();

224. },

225.

226. // Show form is valid

227. 'hostedform:valid': function (event) {

228. console.log('Form valid');

229. return true;

230. },

231.

232. // Show any validation errors

270

233. 'hostedform:invalid': function (event, details) {

234. console.log('Form invalid');

235. showFieldErrors(details.invalid);

236. return true;

237. },

238.

239. // Show general error

240. 'hostedform:error': function (event, details) {

241. showError(details.message);

242. return true;

243. }

244. });

245.

246. // Use jQuery validator to validate the form

247. $form.validate();

248.

249. // End of form automatic setup

250.

251. } else {

252. ///

253. // FORM MANUAL SETUP

254. ///

255.

256. try {

257. // Create the card number field with custom options

258. $('#form-card-number').hostedField({

259. nativeEvents: true,

260. style: 'text-decoration: green wavy underline;',

261. stylesheet: $('style.hostedfields, style.card-number')

262. });

263.

264. // Create the remaining hosted fields

265. $('.form-control-hosted:input', $form).hostedField({nativeEvents: true});

266.

267. } catch (e) {

268. showError('Failed to create hosted fields: ' + e);

269. throw e; // Can't continue with this script

270. }

271.

272. $form.validate({

273. // Get the hosted form widget for the submitted form (Form1 only)

274. submitHandler: function () {

275. try {

276. console.log('getPaymentToken');

277.

278. // Check we have some enabled fields to submit

279. if ($($form[0].elements).filter(':enabled:not([type="hidden"])').length === 0) {

280. showError('You must enable some fields');

281. return false;

282. }

283.

284. var hostedform = $form.hostedForm('instance');

285.

286. var also = {

287. customerName: $('#form-customer-name').val()

288. };

289.

290. hostedform.getPaymentDetails(also, true).then(

291.

292. // Success validating the form and requesting a payment token

293. function (details) {

294. if (details.success) {

295. $form[0].elements['paymentToken'].value = details.paymentToken;

296. $form[0].submit();

297. } else if (details.invalid) {

298. $form.valid();

299. showFieldErrors(details.invalid);

271

300. } else {

301. showError('There was a problem fetching the payment token. Please seek assistance.');

302. }

303. },

304.

305. // Failure either validating the form or requesting the payment details

306. function (e) {

307. showError('There was a problem fetching the payment token. Please seek assistance.');

308. }

309.);

310.

311. } catch (e) {

312. showError('There was a problem fetching the payment token. Please seek assistance.');

313. }

314. }

315. });

316.

317. // End of form manual setup

318.

319. }

320.

321. // Hide errors once all fields are valid

322. $('#form :input').on('valid', function () {

323. if ($(this.form).find(':invalid').length === 0) {

324. hideError($(this.form));

325. }

326. })

327.

328. // Listen for some events on the none Hosted Fields

329. $('.form-control-native').on('invalid', bsMarkInvalid);

330. $('.form-control-native').on('valid', bsMarkValid);

331.

332. // Check we can see the Hosted Fields via their new class

333. // (For demonstration purposes only)

334. console.log($('.form-control-hosted.hostedfield-element'));

335.

336. // Check we can see the Hosted Fields via the psuedo element

337. // (For demonstration purposes only)

338. console.log($('.form-control:hostedfield'));

339.

340. });

341.

342. ///

343. // Supporting functions

344. ///

345.

346. // Display events that are passed from hosted field

347. var events = {

348. 'hostedfield:create.example' : showEvent,

349. 'hostedfield:destroy.example' : showEvent,

350. 'hostedfield:ready.example' : showEvent,

351. 'hostedfield:style.example' : showEvent,

352. 'hostedfield:placeholder.example' : showEvent,

353. 'hostedfield:invalid.example invalid.example' : showEvent,

354. 'hostedfield:userinvalid.example userinvalid.example' : showEvent,

355. 'hostedfield:valid.example valid.example' : showEvent,

356. 'hostedfield:uservalid.example uservalid.example' : showEvent,

357. 'hostedfield:disabled.example disabled.example' : showEvent,

358. 'hostedfield:enabled.example enabled.example' : showEvent,

359. 'hostedfield:required.example required.example' : showEvent,

360. 'hostedfield:optional.example optional.example' : showEvent,

361. 'hostedfield:readonly.example readonly.example' : showEvent,

362. 'hostedfield:readwrite.example readwrite.example' : showEvent,

363. 'hostedfield:focus.example focus.example' : showEvent,

364. 'hostedfield:blur.example blur.example' : showEvent,

365. 'hostedfield:mouseenter.example mouseenter.example' : showEvent,

366. 'hostedfield:mouseleave.example mouseleave.example' : showEvent,

272

367. 'hostedfield:mouseover.example mouseover.example' : showEvent,

368. 'hostedfield:mouseout.example mouseout.example' : showEvent,

369. 'hostedfield:mousemove.example mousemove.example' : showEvent,

370. 'hostedfield:keydown.example keydown.example' : showEvent,

371. 'hostedfield:keypress.example keypress.example' : showEvent,

372. 'hostedfield:keyup.example keyup.example' : showEvent,

373. 'hostedfield:change.example change.example' : showEvent,

374. 'hostedfield:input.example input.example' : showEvent,

375.

376. 'hostedfield:invalid.example invalid.example' : bsMarkInvalid,

377. 'hostedfield:valid.example valid.example' : bsMarkValid,

378. 'hostedfield:valid.example valid.example' : hideError,

379. };

380.

381. function isInvalid(element) {

382. return !element[0].checkValidity();

383. }

384.

385. function showError(msg) {

386. $('#error-info').html(msg).show();

387. }

388.

389. function hideError($form, msg) {

390. $('#error-info', $form).hide();

391. }

392.

393. function showFieldErrors(errors) {

394. var msg = '<h5>Error</h5><p>The following fields are invalid:</p>';

395. for (var p in errors) {

396. msg += '' + p + ': ' + errors[p] + '';

397. }

398. msg += ''

399. showError(msg);

400. }

401.

402. function bsMarkInvalid(e) {

403. var element = (e instanceof $.Event ? this : e);

404. $(element).closest('.form-group').addClass('has-error');

405. }

406.

407. function bsMarkValid(e) {

408. var element = (e instanceof $.Event ? this : e);

409. $(element).closest('.form-group').removeClass('has-error');

410. }

411.

412. function showEvent(event) {

413. console.log(event);

414. console.log('Field ' + event.type + ' event: ', this, arguments);

415. }

416.

417. jQuery.validator.setDefaults({

418. ignore: [],

419. rules: {

420. 'customer-name': {

421. checkValidity: true,

422. required: false

423. },

424. 'card-details': {

425. checkValidity: true,

426. required: false

427. },

428. 'card-number': {

429. checkValidity: true,

430. required: false

431. },

432. 'card-expiry-date': {

433. checkValidity: true,

273

434. required: false

435. },

436. 'card-start-date': {

437. checkValidity: true,

438. required: false

439. },

440. 'card-issue-number': {

441. checkValidity: true,

442. required: false

443. },

444. 'card-cvv': {

445. checkValidity: true,

446. required: false

447. }

448. },

449. keyup: null, // Don\'t validate on keyup

450. showErrors: function (errorMap, errorList) {

451. if (errorList && errorList.length) {

452. var errors = {};

453. for (var i = 0, max_i = errorList.length; i < max_i; i++) {

454. var label = $('label[for="' + errorList[i].element.id + '"]:not(".error")').text();

455. errors[label] = errorList[i].message;

456. }

457. showFieldErrors(errors);

458. }

459. this.defaultShowErrors(errorMap, errorList);

460. },

461. highlight: bsMarkInvalid,

462. unhighlight: bsMarkValid,

463. errorPlacement: function (error, element) {

464. $(element).closest('.form-control:not(".hostedfield-element")').after(error);

465. }

466. });

467.

468. $.validator.addMethod('checkValidity',

469. function (value, element, params, message) {

470. element.checkValidity();

471. var valid = (element.validationMessage === '');

472. $(element).attr('aria-invalid', !valid);

473. return valid;

474. },

475. function (params, element) {

476. return element.validationMessage;

477. }

478.);

479.

480. </script>

481.

482. </body>

483. </html>

274

A-22 Frequently Asked Questions

1. I'm getting Invalid Credentials. What do I do?

• Check your Merchant ID in your integration is correct. Our Gateway Merchant IDs typically
begin with 1 and are currently 6 digits long, e.g. 100001.

2. I'm getting an invalid signature error message. How do I fix it?

• Check that you are using the correct method for calculating the signature and the correct
secret signature key for the Merchant Account used.

• Make sure that you are not using an image form submit button because that will add fields
to the post that cannot be removed and will render the signature useless.

Refer to appendix A-11 for a step by step guide to creating a signature. If you use the same values
as in the example, you can check if your signature generation routine produces the same results.

This test step by step generator is available from the Gateway by adding the following to your
Gateway URL:

/devtools/sigtest.php

3. I have more than one Merchant ID - how do I use more than one?

• You have a couple of options here. You can set up separate integrations for each MID,
which can be a bit inconvenient. Your other option is to request they are connected
together. Please contact our support team to get your MIDs connected and you will then
only need to use one.

4. I receive a 'Bad Testcard Usage' error message. Why?

• If you receive this error message, you are using test cards on a live Merchant ID. Please
only use live cards on live Merchant IDs. Our test cards will only work on the test Merchant
ID provided when you sign up with us.

file:///C:/devtools/sigtest.php

275

INDEX

1 Gateway Integration .. 4

1.1 ABOUT THIS GUIDE .. 4
1.2 TERMINOLOGY ... 5
1.3 INTEGRATION METHODS .. 6

1.3.1 Hosted Integration .. 6
1.3.2 Direct Integration .. 7
1.3.3 Batch Integration .. 7

1.4 INTEGRATION LIBRARIES .. 8
1.5 SECURITY AND COMPLIANCE ... 9
INTEGRATION DETAILS .. 10

1.5.1 HTTP Requests ... 10
1.5.2 Hosted HTTP Requests .. 11
1.5.3 Direct HTTP Requests .. 11
1.5.4 Batch HTTP Requests ... 12
1.5.5 Handling Errors ... 14
1.5.6 Redirect URL .. 15
1.5.7 Callback URL .. 15
1.5.8 Field Formats ... 16

1.6 AUTHENTICATION ... 17
1.6.1 Password Authentication .. 17
1.6.2 Message signing .. 17
1.6.3 Allowed IP addresses ... 17

1.7 SUPPORTED ACTIONS .. 18
1.7.1 SALE ... 18
1.7.2 VERIFY ... 18
1.7.3 PREAUTH ... 18
1.7.4 REFUND_SALE ... 19
1.7.5 REFUND ... 19
1.7.6 CAPTURE ... 19
1.7.7 CANCEL .. 20
1.7.8 QUERY ... 20

2 New Transactions .. 21
2.1 REQUEST FIELDS .. 21
2.2 RESPONSE FIELDS ... 23

3 Management Requests .. 25
3.1 REQUEST FIELDS .. 25
3.2 RESPONSE FIELDS ... 26

4 Hosted Payment Page Options .. 27
4.1 REQUEST FIELDS .. 27

5 AVS/CV2 Checking .. 29
5.1 BACKGROUND ... 29

5.1.1 AVS Checking ... 29
5.1.2 CV2 Checking ... 29

5.2 BENEFITS AND LIMITATIONS ... 30
5.2.1 Benefits ... 30
5.2.2 Limitations ... 30

5.3 REQUEST FIELDS .. 31
5.4 RESPONSE FIELDS ... 32

6 3-D Secure Authentication .. 33
6.1 BACKGROUND ... 33
6.2 BENEFITS AND LIMITATIONS ... 34

6.2.1 Benefits ... 34
6.2.2 Limitations ... 34

6.3 HOSTED IMPLEMENTATION .. 35
6.4 DIRECT IMPLEMENTATION .. 36

276

6.4.1 Initial Request (Verify Enrolment) ... 36
6.4.2 Continuation Request (Check AuthenticationandAuthorise) ... 36
6.4.3 Multiple Challenges and Frictionless Flow .. 37
6.4.4 Cardholder Challenge .. 37
6.4.5 Device Fingerprinting Challenge ... 37
6.4.6 External Authentication Request ... 37

6.5 REQUEST FIELDS .. 38
6.5.1 Initial Request (Hosted and Direct Integration) .. 38
6.5.2 Continuation Request (Direct Integration) .. 39
6.5.3 External Authentication Request (Direct Integration) ... 40
6.5.4 3-D Secure 2 Options (Hosted and Direct Integration) .. 41

6.6 RESPONSE FIELDS ... 46
6.6.1 Initial Response (Direct Integration) ... 46
6.6.2 Continuation Response (Direct Integration) .. 47
6.6.3 External Authentication Response (Direct Integration) ... 48
6.6.4 Cardholder Information (Hosted and Direct Integration).. 48

7 Risk Checking .. 49
7.1 BACKGROUND ... 49
7.2 BENEFITS AND LIMITATIONS ... 50

7.2.1 Benefits ... 50
7.2.2 Limitations ... 50

7.3 IMPLEMENTATION .. 51
7.4 REQUEST FIELDS .. 52

7.4.1 Request Fields.. 52
7.4.2 Risk Check Options .. 53

7.5 RESPONSE FIELDS ... 56
8 Payment Facilitators .. 57

8.1 BACKGROUND ... 57
8.2 REQUEST FIELDS .. 57

9 UK MCC 6012 Merchants .. 58
9.1 BACKGROUND ... 58
9.2 REQUEST FIELDS .. 59

10 Billing Descriptor ... 60
10.1 BACKGROUND ... 60

10.1.1 Static Descriptor ... 60
10.1.2 Dynamic Descriptor .. 60

10.2 REQUEST FIELDS .. 61
11 Surcharges ... 62

11.1 BACKGROUND ... 62
11.2 IMPLEMENTATION .. 63

11.2.1 Surcharge Rules .. 63
11.2.2 Surcharge Amounts .. 63

11.3 REQUEST FIELDS .. 64
11.4 RESPONSE FIELDS ... 65

12 Receipts and Notifications .. 66
12.1 BACKGROUND ... 66

12.1.1 Customer Email Receipts .. 66
12.1.2 Merchant Email Notifications ... 66

12.2 REQUEST FIELDS .. 67
12.2.1 General Fields ... 67

12.3 RESPONSE FIELDS ... 69
13 Recurring Transaction Agreements .. 70

13.1 BACKGROUND ... 70
13.2 SCHEDULING ... 71

13.2.1 Fixed Scheduling ... 71
13.2.2 Variable Scheduling .. 71

13.3 REQUEST FIELDS .. 72
13.4 RESPONSE FIELDS ... 73

277

14 Duplicate Transaction Checking .. 74
14.1 BACKGROUND ... 74
14.2 IMPLEMENTATION .. 74
14.3 REQUEST FIELDS .. 74

15 Purchase Data .. 75
15.1 BACKGROUND ... 75

15.1.1 American Express Purchases .. 75
15.1.2 Purchase Orders ... 75

15.2 REQUEST FIELDS .. 76
16 Custom Data ... 79

16.6 REQUEST FIELDS .. 79
17 Advanced Data ... 80

17.1 CUSTOMER REQUEST FIELDS .. 80
17.2 MERCHANT REQUEST FIELDS .. 81
17.3 SUPPLIER REQUEST FIELDS ... 82
17.4 DELIVERY REQUEST FIELDS ... 83
17.5 RECEIVER REQUEST FIELDS ... 84
17.6 SHIPPING REQUEST FIELDS ... 85

18 Gateway Wallet .. 87
18.1 BACKGROUND ... 87
18.2 BENEFITS AND LIMITATIONS ... 88

18.2.1 Benefits ... 88
18.2.2 Limitations .. 88

18.3 HOSTED IMPLEMENTATION .. 89
18.4 DIRECT IMPLEMENTATION .. 90
18.5 REQUEST FIELDS .. 91
18.6 RESPONSE FIELDS ... 93

19 Masterpass Wallet ... 94
19.1 BACKGROUND ... 94
19.2 BENEFITS AND LIMITATIONS ... 95

19.2.1 Benefits ... 95
19.2.2 Limitations .. 95

19.3 HOSTED IMPLEMENTATION .. 96
19.4 DIRECT IMPLEMENTATION .. 97

19.4.1 Initial Request (Checkout Preparation) ... 97
19.4.2 Continuation Request (Checkout Details and Authorise).. 97
19.4.3 Separate Checkout Details and Authorisation Requests .. 98

19.5 REQUEST FIELDS .. 99
19.5.1 Initial Request (Hosted and Direct Integrations) .. 99
19.5.2 Continuation Request (Direct Integration) ... 99
19.5.3 Wallet Options (Hosted and Direct Integrations) ... 100
19.5.4 Purchase details (Hosted and Direct Integrations) ... 102

19.6 RESPONSE FIELDS ... 103
19.6.1 Initial Response (Direct Integration) ... 103
19.6.2 Continuation Response (Direct Integration) ... 104

20 PayPal Transactions .. 105
20.1 BACKGROUND ... 105
20.2 BENEFITS AND LIMITATIONS ... 106

20.2.1 Benefits ... 106
20.2.2 Limitations .. 106

20.3 HOSTED IMPLEMENTATION .. 107
20.4 DIRECT IMPLEMENTATION .. 108

20.4.1 Initial Request (Checkout Preparation) ... 108
20.4.2 Continuation Request (Checkout Details and Authorise).. 108
20.4.3 Separate Checkout Details and Authorisation Requests .. 109

20.5 REQUEST FIELDS .. 110
20.5.1 Initial Request (Hosted and Direct Integrations) .. 110
20.5.2 Continuation Request (Direct Integration) ... 110

278

20.5.3 Checkout Options (Hosted and Direct Integrations) ... 111
20.5.4 Purchase details (Hosted and Direct Integrations) ... 116

20.6 RESPONSE FIELDS ... 117
20.6.1 Initial Response (Direct Integration) ... 117
20.6.2 Continuation Response (Direct Integration) ... 118
20.6.3 Checkout Details (Hosted and Direct Integration) .. 119

20.7 TRANSACTION LIFECYCLE ... 127
20.7.1 Order .. 127
20.7.2 Authorise .. 127
20.7.3 Sale ... 127
20.7.4 Capture ... 127
20.7.5 Refund .. 128
20.7.6 Cancel ... 128
20.7.7 Pending Payments .. 128

20.8 REFERENCE TRANSACTIONS .. 129
21 Amazon Pay Transaction .. 130

21.1 BACKGROUND ... 130
21.2 BENEFITS AND LIMITATIONS ... 131

21.2.1 Benefits ... 131
21.2.2 Limitations .. 131

21.3 HOSTED IMPLEMENTATION .. 132
21.4 DIRECT IMPLEMENTATION .. 133

21.4.1 Initial Request (Checkout Preparation) ... 133
21.4.2 Continuation Request (Checkout Details and Authorise).. 133
21.4.3 Separate Checkout Details and Authorisation Requests .. 134

21.5 REQUEST FIELDS .. 135
21.5.1 Initial Request (Hosted and Direct Integration) .. 135
21.5.2 Continuation Request (Direct Integration) ... 135
21.5.3 Checkout Options (Hosted and Direct Integration) .. 136
21.5.4 Response Fields .. 137
21.5.5 Initial Response (Direct Integration) ... 137
21.5.6 Continuation Response (Direct Integration) ... 138
21.5.7 Checkout Details (Hosted and Direct Integration) .. 139

21.6 TRANSACTION LIFECYCLE ... 140
21.6.1 Capture ... 140
21.6.2 Refund Sale ... 140

21.7 REFERENCE TRANSACTIONS .. 141
22 PPRO Transactions ... 142

22.1 BACKGROUND ... 142
22.2 BENEFITS AND LIMITATIONS ... 143

22.2.1 Benefits ... 143
22.2.2 Limitations .. 143

22.3 HOSTED IMPLEMENTATION .. 144
22.4 DIRECT IMPLEMENTATION .. 145

22.4.1 Payment Request .. 145
22.4.2 Payment Specific Fields .. 145
22.4.3 Payment Method Tags ... 146

22.5 REQUEST FIELDS .. 150
22.5.1 Initial Request (Hosted and Direct Integration) .. 150
22.5.2 Checkout Options (Hosted and Direct Integration) .. 151

22.6 RESPONSE FIELDS .. 152
22.6.1 Initial Response (Direct Integration) ... 152
22.6.2 Completion Response (Hosted and Direct Integration) .. 152
22.6.3 Notifications and “Tendered” Payments .. 153

23 Digital Wallet Transactions ... 154
23.1 BACKGROUND ... 154
23.2 BENEFITS AND LIMITATIONS ... 155

23.2.1 Benefits ... 155

279

23.2.2 Limitations .. 155
23.3 CONFIGURATION .. 156

23.3.1 Apple Pay configuration .. 156
23.3.2 Google Pay configuration ... 156

23.4 HOSTED IMPLEMENTATION .. 157
23.5 DIRECT IMPLEMENTATION .. 158
23.6 REQUEST FIELDS .. 158
23.7 RESPONSE FIELDS ... 158

A-1 Response Codes .. 159
A-2 AVS / CV2 Check Response Codes ... 167
A-3 3-D Secure Enrolment/Authentication Codes ... 169
A-4 3-D Secure Enrolment/Authentication Only .. 170
A-5 Request Checking Only .. 171
A-6 Merchant Account Mapping.. 172
A-7 Velocity Control System (VCS) .. 173
A-8 Capture Delay ... 174
A-9 Types of card ... 175
A-10 Integration Testing .. 177

A-10.1 TEST CARD DETAILS .. 177
A-10.1.1 Visa Credit ... 177
A-10.1.2 Visa Debit .. 178
A-10.1.3 Mastercard Credit ... 178
A-10.1.4 Mastercard Debit .. 178

A-10.2 PAYPAL SANDBOX ACCOUNTS .. 182
A-10.3 AMAZON PAY SANDBOX ACCOUNTS .. 182

A-11 Sample Signature Calculation .. 183
A-12 Transaction Life cycle ... 185

A-12.1 AUTHORISE, CAPTURE AND SETTLEMENT .. 185
A-12.1.1 Authorisation ... 185
A-12.1.2 Capture .. 185
A-12.1.3 Settlement ... 185

A-12.2 TRANSACTION STATES ... 186
A-12.2.1 Received .. 186
A-12.2.2 Approved ... 186
A-12.2.3 Verified ... 186
A-12.2.4 Declined ... 186
A-12.2.5 Referred ... 186
A-12.2.6 Reversed ... 187
A-12.2.7 Captured .. 187
A-12.2.8 Tendered ... 187
A-12.2.9 Deferred ... 187
A-12.2.10 Accepted .. 188
A-12.2.11 Rejected... 188
A-12.2.12 Canceled ... 188
A-12.2.13 Finished ... 188

A-13 Transaction types .. 189
A-13.1 E-COMMERCE (ECOM) .. 189
A-13.2 MAIL ORDER/TELEPHONE ORDER (MOTO) ... 189
A-13.3 CONTINUOUS AUTHORITY (CA) .. 189

A-14 Payment Tokenisation ... 190
A-14.1 PREAUTH, SALE, REFUND, VERIFY REQUESTS ... 190
A-14.2 REFUND_SALE REQUESTS ... 191
A-14.3 CANCEL OR CAPTURE REQUESTS ... 191
A-14.4 QUERY REQUESTS ... 191
A-14.5 SALE OR REFUND REFERRED AUTHORISATION REQUESTS .. 192

A-15 Repeat Transactions ... 193
A-15.1 MOTO TRANSACTIONS .. 193
A-15.1.1 Initial Transaction ... 193

280

A-15.1.2 Repeat Transaction .. 193
A-15.2 CONTINUOUS PAYMENT AGREEMENTS ... 194
A-15.2.1 Initial Transaction ... 194
A-15.2.2 Repeat Transaction .. 194

A-16 Transaction Cloning .. 196
A-16.1 CLONED FIELDS ... 197
A-16.2 CLONED GROUPS ... 201
A-16.2.1 Compound Groups ... 201
A-16.2.2 Line Item Data ... 201
A-16.2.3 Amount Consistency .. 201

A-17 Stored Credentials Framework .. 202
A-17.1 CREDENTIALS ON FILE (COF) .. 203
A-17.2 CONSUMER INITIATED TRANSACTIONS (CIT) ... 204
A-17.3 MERCHANT INITIATED TRANSACTIONS (MIT) .. 205
A-17.3.4 Standing Instruction MITs ... 205
A-17.3.5 Industry-Specific Business Practice MIT ... 206

A-18 Integration Libraries .. 208
A-18.1 GATEWAY INTEGRATION LIBRARY .. 209
A-18.1.1 Library Namespace .. 209
A-18.1.2 Gateway Configuration .. 209
A-18.1.3 Gateway Methods .. 210

A-18.2 HOSTED PAYMENT PAGE LIBRARY ... 214
A-18.2.1 Hosted Payment Pages ... 214
A-18.2.2 Library Namespace .. 214
A-18.2.3 Form Construction .. 215
A-18.2.4 Form Methods ... 216
A-18.2.5 jQuery Plugin ... 217

A-18.3 HOSTED PAYMENT FIELDS LIBRARY .. 218
A-18.3.1 Hosted Payment Fields ... 218
A-18.3.2 Library Namespace .. 219
A-18.3.3 Form Construction ... 220
A-18.3.4 Form Methods ... 223
A-18.3.5 Form Events .. 226
A-18.3.6 Field Construction ... 227
A-18.3.7 Field Methods .. 231
A-18.3.8 Field Events ... 235
A-18.3.9 Field CSS Classes ... 237
A-18.3.10 Field Styling ... 238
A-18.3.11 jQuery Plugin .. 241

A-19 Example HTTP Requests .. 242
A-19.1 HOSTED INTEGRATION .. 242
A-19.1.1 Transaction Request HTTP Headers .. 242
A-19.1.2 Transaction Response HTTP Headers ... 242
A-19.1.3 Submission Example ... 243

A-19.2 DIRECT INTEGRATION.. 244
A-19.2.1 Transaction Request HTTP Headers .. 244
A-19.2.2 Transaction Response HTTP Headers ... 244
A-19.2.3 Submission Example ... 245

A-19.3 BATCH INTEGRATION .. 246
A-19.3.1 Submission Request HTTP Headers .. 246
A-19.3.2 Submission Response HTTP Headers ... 247
A-19.3.3 Status Request HTTP Headers .. 248
A-19.3.4 Status Response HTTP Headers ... 248
A-19.3.5 Submission Example ... 248

A-20 Example Integration Code .. 250
A-20.1 HOSTED INTEGRATION .. 250
A-20.1.1 Sale Transaction ... 250

A-20.2 DIRECT INTEGRATION.. 252

281

A-20.2.1 Sale Transaction (with 3-D Secure) ... 252
A-20.2.2 Sale Transaction (without 3-D Secure) ... 254

A-20.3 BATCH INTEGRATION .. 256
A-20.3.1 Batch Submission ... 256

A-21 Example Library Code ... 259
A-21.1 GATEWAY INTEGRATION LIBRARY .. 259
A-21.1.1 Hosted Sale Transaction ... 259
A-21.1.2 Direct Sale Transaction (with 3-D Secure) ... 260

A-21.2 HOSTED PAYMENT PAGE LIBRARY ... 262
A-21.2.1 Hosted Sale Transaction ... 262
A-21.2.2 Hosted Sale Transaction (jQuery).. 263
A-21.2.3 Hosted Sale Transaction #2 ... 264
A-21.2.4 Hosted Sale Transaction #2 (jQuery) .. 265

A-21.3 HOSTED PAYMENT FIELDS LIBRARY .. 266
A-22 Frequently Asked Questions .. 274
INDEX 275

